Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Temporo-spatial cell-cycle kinetics in HeLa cells irradiated by Ir-192 high dose-rate remote afterloading system (HDR-RALS)

Authors: Taito Asahina, Atsushi Kaida, Tatsuaki Goto, Ryo-Ichi Yoshimura, Keisuke Sasai, Masahiko Miura

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

Intracavitary irradiation plays a pivotal role in definitive radiotherapy for cervical cancer, and the Ir-192 high dose-rate remote afterloading system (HDR-RALS) is often used for this purpose. Under this condition, tumor tissues receive remarkably different absorption doses, with a steep gradient, depending on distance from the radiation source. To obtain temporo-spatial information regarding cell-cycle kinetics in cervical cancer following irradiation by Ir-192 HDR-RALS, we examined HeLa cells expressing the fluorescence ubiquitination-based cell cycle indicator (Fucci), which allowed us to visualize cell-cycle progression.

Methods

HeLa-Fucci cells, which emit red and green fluorescence in G1 and S/G2/M phases, respectively, were grown on 35-mm dishes and irradiated by Ir-192 HDR-RALS under normoxic and hypoxic conditions. A 6 French (Fr) catheter was used as an applicator. A radiation dose of 6 Gy was prescribed at hypothetical treatment point A, located 20 mm from the radiation source. Changes in Fucci fluorescence after irradiation were visualized for cells from 5 to 20 mm from the Ir-192 source. Several indices, including first green phase duration after irradiation (FGPD), were measured by analysis of time-lapse images.

Results

Cells located 5 to 20 mm from the Ir-192 source became green, reflecting arrest in G2, in a similar manner up to 12 h after irradiation; at more distant positions, however, cells were gradually released from the G2 arrest and became red. This could be explained by the observation that the FGPD was longer for cells closer to the radiation source. Detailed observation revealed that FGPD was significantly longer in cells irradiated in the green phase than in the red phase at positions closer to the Ir-192 source. Unexpectedly, the FGPD was significantly longer after irradiation under hypoxia than normoxia, due in large part to the elongation of FGPD in cells irradiated in the red phase.

Conclusion

Using HeLa-Fucci cells, we obtained the first temporo-spatial information about cell-cycle kinetics following irradiation by Ir-192 HDR-RALS. Our findings suggest that the potentially surviving hypoxic cells, especially those arising from positions around point A, exhibit different cell-cycle kinetics from normoxic cells destined to be eradicated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy. 2012;11:47–52.CrossRefPubMedPubMedCentral Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy. 2012;11:47–52.CrossRefPubMedPubMedCentral
2.
go back to reference Hareyama M, Sakata K, Oouchi A, Nagakura H, Shido M, Someya M, et al. High-dose-rate versus low-dose-rate intracavitary therapy for carcinoma of the uterine cervix: A randomized trial. Cancer. 2002;94:117–24.CrossRefPubMed Hareyama M, Sakata K, Oouchi A, Nagakura H, Shido M, Someya M, et al. High-dose-rate versus low-dose-rate intracavitary therapy for carcinoma of the uterine cervix: A randomized trial. Cancer. 2002;94:117–24.CrossRefPubMed
3.
go back to reference Brenner DJ, Huang Y, Hall EJ. Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: Equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys. 1991;21:1415–23.CrossRefPubMed Brenner DJ, Huang Y, Hall EJ. Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: Equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys. 1991;21:1415–23.CrossRefPubMed
4.
go back to reference Hansen E, Roach M. Cervical Cancer. In: Hansen E, Roach M, editors. Handbook of evidence-based radiation oncology. 2nd ed. New York: Springer; 2009. p. 499–512. Hansen E, Roach M. Cervical Cancer. In: Hansen E, Roach M, editors. Handbook of evidence-based radiation oncology. 2nd ed. New York: Springer; 2009. p. 499–512.
5.
go back to reference Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629–34.CrossRefPubMed Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629–34.CrossRefPubMed
6.
go back to reference Enoch T, Norbury C. Cellular response to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci. 1995;10:426–30.CrossRef Enoch T, Norbury C. Cellular response to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci. 1995;10:426–30.CrossRef
7.
go back to reference O’Connor PM. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 1997;29:151–82.PubMed O’Connor PM. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 1997;29:151–82.PubMed
8.
9.
go back to reference Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–98.CrossRefPubMed Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–98.CrossRefPubMed
10.
go back to reference Kaida A, Sawai N, Sakaguchi K, Miura M. Fluorescence kinetics in HeLa cells after treatment with cell cycle arrest inducers visualized with Fucci (fluorescent ubiquitination-based cell cycle indicator). Cell Biol Int. 2011;35:359–63.CrossRefPubMed Kaida A, Sawai N, Sakaguchi K, Miura M. Fluorescence kinetics in HeLa cells after treatment with cell cycle arrest inducers visualized with Fucci (fluorescent ubiquitination-based cell cycle indicator). Cell Biol Int. 2011;35:359–63.CrossRefPubMed
11.
go back to reference Kaida A, Miura M. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 2012;318:288–97.CrossRefPubMed Kaida A, Miura M. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 2012;318:288–97.CrossRefPubMed
12.
go back to reference Urushiyama A, Shinsho K, Tomizawa Y. US patent No.8704182. 2014. Urushiyama A, Shinsho K, Tomizawa Y. US patent No.8704182. 2014.
13.
go back to reference Kaida A, Miura M. Differential dependence on oxygen tension during the maturation peocess between monomeric Ksabira Orange 2 and monomeric Azami Green expression in HeLa cells. Bichem Biophys Res Commun. 2012;421:855–9.CrossRef Kaida A, Miura M. Differential dependence on oxygen tension during the maturation peocess between monomeric Ksabira Orange 2 and monomeric Azami Green expression in HeLa cells. Bichem Biophys Res Commun. 2012;421:855–9.CrossRef
14.
go back to reference Goto T, Kaida A, Miura M. Visualizing cell-cycle kinetics after hypoxia/ reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 2015;392:389–96.CrossRef Goto T, Kaida A, Miura M. Visualizing cell-cycle kinetics after hypoxia/ reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 2015;392:389–96.CrossRef
15.
go back to reference Tsuchida E, Kaida A, Pratama E, Ikeda MA, Suzuki K, Harada K, et al. Effect of X-irradiation at different stages in the cell cycle on individual cell-based kinetics in an asynchrounous cell populstion. PLoS One. 2015;10:e0128090.CrossRefPubMedPubMedCentral Tsuchida E, Kaida A, Pratama E, Ikeda MA, Suzuki K, Harada K, et al. Effect of X-irradiation at different stages in the cell cycle on individual cell-based kinetics in an asynchrounous cell populstion. PLoS One. 2015;10:e0128090.CrossRefPubMedPubMedCentral
16.
go back to reference Suzuki Y, Nakano T, Ohno T, Kato S, Niibe Y, Morita S, et al. Oxygenated and reoxygenated tumors show better local control in radiotherapy for cervical cancer. Int J Gtnecol Cancer. 2006;16:306–11.CrossRef Suzuki Y, Nakano T, Ohno T, Kato S, Niibe Y, Morita S, et al. Oxygenated and reoxygenated tumors show better local control in radiotherapy for cervical cancer. Int J Gtnecol Cancer. 2006;16:306–11.CrossRef
17.
go back to reference Nakano T, Suzuki Y, Ohno T, Kato S, Suzuki M, Morita S, et al. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res. 2006;12:2185–90.CrossRefPubMed Nakano T, Suzuki Y, Ohno T, Kato S, Suzuki M, Morita S, et al. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res. 2006;12:2185–90.CrossRefPubMed
18.
go back to reference Lau P, Baumstark-Khan C, Hellweg CE, Reitz G. X-irradiation-induced cell cycle delay and DNA double-strand brekas in the murine osteoblastic cell line OCT-1. Radiat Environ Biophys. 2010;49:271–80.CrossRefPubMed Lau P, Baumstark-Khan C, Hellweg CE, Reitz G. X-irradiation-induced cell cycle delay and DNA double-strand brekas in the murine osteoblastic cell line OCT-1. Radiat Environ Biophys. 2010;49:271–80.CrossRefPubMed
19.
go back to reference Choudhury A, Cuddihy A, Bristow RG. Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol. 2006;16:51–8.CrossRefPubMed Choudhury A, Cuddihy A, Bristow RG. Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol. 2006;16:51–8.CrossRefPubMed
20.
go back to reference Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.CrossRefPubMed Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.CrossRefPubMed
21.
go back to reference Bernhard EJ, Maity A, Muschel RJ, McKenna WG. Effects of ionizing radiation on cell-cycle progression A review. Radiat Environ Biophys. 1995;34:79–83.CrossRefPubMed Bernhard EJ, Maity A, Muschel RJ, McKenna WG. Effects of ionizing radiation on cell-cycle progression A review. Radiat Environ Biophys. 1995;34:79–83.CrossRefPubMed
22.
go back to reference Hall EJ, Giaccia J. Molecular mechanisms of DNA and chromosome damage and repair. In: Hall EJ, Giaccia J, editors. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 12–34. Hall EJ, Giaccia J. Molecular mechanisms of DNA and chromosome damage and repair. In: Hall EJ, Giaccia J, editors. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 12–34.
23.
go back to reference Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–29.CrossRefPubMedPubMedCentral Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47:320–29.CrossRefPubMedPubMedCentral
24.
go back to reference Banath JP, Sinnott L, Larrivee B, MacPhail SH, Olive PL. Growth of V79 cells as xenograft tumors promotes multicellular resistance but does not increase spontaneous or radiation-induced mutant frequency. Radiat Res. 2005;164:733–44.CrossRefPubMed Banath JP, Sinnott L, Larrivee B, MacPhail SH, Olive PL. Growth of V79 cells as xenograft tumors promotes multicellular resistance but does not increase spontaneous or radiation-induced mutant frequency. Radiat Res. 2005;164:733–44.CrossRefPubMed
25.
go back to reference Hirayama R, Furusawa Y, Fukawa T, Ando K. Repair kinetics of DNA-DSB induced by X-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res. 2005;46:325–32.CrossRefPubMed Hirayama R, Furusawa Y, Fukawa T, Ando K. Repair kinetics of DNA-DSB induced by X-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res. 2005;46:325–32.CrossRefPubMed
26.
go back to reference Hammond EM, Kaufmann MR, Giaccia AJ. Oxygen Sensing and the DNA-damaging response. Curr Opin Cell Biol. 2007;19:680–4.CrossRefPubMed Hammond EM, Kaufmann MR, Giaccia AJ. Oxygen Sensing and the DNA-damaging response. Curr Opin Cell Biol. 2007;19:680–4.CrossRefPubMed
27.
go back to reference Nakano T, Mitsusada Y, Salem AMH, Shoukamy M, Sugimoto T, Hirayama R, et al. Induction of DNA-cros-links by ionizing radiation and their elimination from the genome. Mutat Res. 2015;771:45–50.CrossRefPubMed Nakano T, Mitsusada Y, Salem AMH, Shoukamy M, Sugimoto T, Hirayama R, et al. Induction of DNA-cros-links by ionizing radiation and their elimination from the genome. Mutat Res. 2015;771:45–50.CrossRefPubMed
28.
go back to reference Hall EJ, Giaccia J. Oxygen effect and reoxygenation. In: Hall EJ, Giaccia J, editors. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 86–103. Hall EJ, Giaccia J. Oxygen effect and reoxygenation. In: Hall EJ, Giaccia J, editors. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 86–103.
Metadata
Title
Temporo-spatial cell-cycle kinetics in HeLa cells irradiated by Ir-192 high dose-rate remote afterloading system (HDR-RALS)
Authors
Taito Asahina
Atsushi Kaida
Tatsuaki Goto
Ryo-Ichi Yoshimura
Keisuke Sasai
Masahiko Miura
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0669-8

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue