Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Renal atrophy after stereotactic body radiotherapy for renal cell carcinoma

Authors: Takaya Yamamoto, Noriyuki Kadoya, Ken Takeda, Haruo Matsushita, Rei Umezawa, Kiyokazu Sato, Masaki Kubozono, Kengo Ito, Yojiro Ishikawa, Maiko Kozumi, Noriyoshi Takahashi, Yu Katagiri, Hiroshi Onishi, Keiichi Jingu

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

Renal atrophy is observed in an irradiated kidney. The aim of this study was to determine dose-volume histogram parameters and other factors that predict renal atrophy after 10-fraction stereotactic body radiotherapy (SBRT) for primary renal cell carcinoma (RCC).

Methods

A total of 14 patients (11 males, 3 females) who received SBRT for RCC at Tohoku University Hospital between April 2010 and February 2014 were analyzed. The median serum creatinine level was 1.1 mg/dl and two patients had a single kidney. Nine patients were implanted with fiducial markers. The median tumor diameter was 30 mm. SBRT was delivered at 70 Gy in 10 fractions for 7 tumors, at 60 Gy in 10 fractions for 2 tumors, and at 50 Gy in 10 fractions for 5 tumors with 6 and/or 15 MV X-ray using 5 to 8 multi-static beams. Renal atrophy was assessed using post-SBRT CT images after 12–24 months intervals. Correlations were examined by Spearman rank correlation analysis. Differences between two groups were evaluated by the Mann-Whitney test, and pairwise comparisons were made by the Wilcoxon signed-rank test.

Results

The median tumor volume shrunk from 14.8 cc to 10.6 cc (p = 0.12), and the median irradiated kidney volume changed from 160.4 cc to 137.1 cc (p < .01). The median peak creatinine level was 1.6 mg/dl after treatment (p < .01). Percentage volumes of the irradiated kidney receiving at least 10 Gy (V10, p = 0.03), V20 (p < .01), V30(p < .01), V40 (p = 0.01), mean irradiated kidney dose (p < .01), and magnitude of overlap between PTV and kidney volume (p = 0.03) were significantly correlated with post-treatment irradiated kidney volume in percent, and V20-V30 had strong correlation (r < −0.70, p < .01). Patients with implanted fiducial markers showed a significantly lower ratio of renal atrophy (p = 0.02).

Conclusions

Significant renal atrophic change was observed. Dose distribution of SBRT at 20–30 Gy had a strong correlation with renal atrophy when irradiation was performed in 10 fractions.
Literature
1.
go back to reference Lax I, Blomgren H, Näslund I, Svanström R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33:677–83.CrossRefPubMed Lax I, Blomgren H, Näslund I, Svanström R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33:677–83.CrossRefPubMed
2.
go back to reference Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.4.CrossRefPubMedPubMedCentral Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.4.CrossRefPubMedPubMedCentral
3.
go back to reference Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16:630–7.CrossRefPubMed Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16:630–7.CrossRefPubMed
4.
go back to reference King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109:217–21.CrossRefPubMed King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109:217–21.CrossRefPubMed
5.
go back to reference Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol. 2001;19:164–70.PubMed Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol. 2001;19:164–70.PubMed
6.
go back to reference Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J, et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005;76:48–53.CrossRefPubMed Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J, et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005;76:48–53.CrossRefPubMed
7.
go back to reference Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.CrossRefPubMed Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.CrossRefPubMed
9.
go back to reference Tunio MA, Hashmi A, Rafi M. Need for a new trial to evaluate postoperative radiotherapy in renal cell carcinoma: a meta-analysis of randomized controlled trials. Ann Oncol. 2010;21:1839–45.CrossRefPubMed Tunio MA, Hashmi A, Rafi M. Need for a new trial to evaluate postoperative radiotherapy in renal cell carcinoma: a meta-analysis of randomized controlled trials. Ann Oncol. 2010;21:1839–45.CrossRefPubMed
10.
go back to reference Siva S, Pham D, Gill S, Corcoran NM, Foroudi F. A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int. 2012;110:E737–43.CrossRefPubMed Siva S, Pham D, Gill S, Corcoran NM, Foroudi F. A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int. 2012;110:E737–43.CrossRefPubMed
11.
go back to reference Pham D, Thompson A, Kron T, Foroudi F, Kolsky MS, Devereux T, et al. Stereotactic ablative body radiation therapy for primary kidney cancer: a 3-dimensional conformal technique associated with low rates of early toxicity. Int J Radiat Oncol Biol Phys. 2014;90:1061–8.CrossRefPubMed Pham D, Thompson A, Kron T, Foroudi F, Kolsky MS, Devereux T, et al. Stereotactic ablative body radiation therapy for primary kidney cancer: a 3-dimensional conformal technique associated with low rates of early toxicity. Int J Radiat Oncol Biol Phys. 2014;90:1061–8.CrossRefPubMed
12.
go back to reference Staehler M, Bader M, Schlenker B, Casuscelli J, Karl A, Roosen A, et al. Single fraction radiosurgery for the treatment of renal tumors. J Urol. 2015;193:771–5.CrossRefPubMed Staehler M, Bader M, Schlenker B, Casuscelli J, Karl A, Roosen A, et al. Single fraction radiosurgery for the treatment of renal tumors. J Urol. 2015;193:771–5.CrossRefPubMed
13.
go back to reference Ponsky L, Lo SS, Zhang Y, Schluchter M, Liu Y, Patel R, et al. Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol. 2015;117:183–7.CrossRefPubMed Ponsky L, Lo SS, Zhang Y, Schluchter M, Liu Y, Patel R, et al. Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol. 2015;117:183–7.CrossRefPubMed
15.
go back to reference Yang GY, May KS, Iyer RV, Chandrasekhar R, Wilding GE, McCloskey SA, et al. Renal atrophy secondary to chemoradiotherapy of abdominal malignancies. Int J Radiat Oncol Biol Phys. 2010;78:539–46.CrossRefPubMed Yang GY, May KS, Iyer RV, Chandrasekhar R, Wilding GE, McCloskey SA, et al. Renal atrophy secondary to chemoradiotherapy of abdominal malignancies. Int J Radiat Oncol Biol Phys. 2010;78:539–46.CrossRefPubMed
16.
go back to reference Jackson P, Foroudi F, Pham D, Hofman MS, Hardcastle N, Callahan J, et al. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99 m)Tc-DMSA SPECT/CT. Radiat Oncol. 2014;9:253.CrossRefPubMedPubMedCentral Jackson P, Foroudi F, Pham D, Hofman MS, Hardcastle N, Callahan J, et al. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99 m)Tc-DMSA SPECT/CT. Radiat Oncol. 2014;9:253.CrossRefPubMedPubMedCentral
17.
go back to reference Svedman C, Karlsson K, Rutkowska E, Sandström P, Blomgren H, Lax I, et al. Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol. 2008;47:1578–83.CrossRefPubMed Svedman C, Karlsson K, Rutkowska E, Sandström P, Blomgren H, Lax I, et al. Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol. 2008;47:1578–83.CrossRefPubMed
18.
go back to reference Kuru TH, Zhu J, Popeneciu IV, Rudhardt NS, Hadaschik BA, Teber D, et al. Volumetry may predict early renal function after nephron sparing surgery in solitary kidney patients. Springerplus. 2014;3:488. Kuru TH, Zhu J, Popeneciu IV, Rudhardt NS, Hadaschik BA, Teber D, et al. Volumetry may predict early renal function after nephron sparing surgery in solitary kidney patients. Springerplus. 2014;3:488.
19.
go back to reference Dewit L, Verheij M, V Olmos RA, Arisz L. Compensatory renal response after unilateral partial and whole volume high-dose irradiation of the human kidney. Eur J Cancer Part A Gen Top. 1993;29:2239–43.CrossRef Dewit L, Verheij M, V Olmos RA, Arisz L. Compensatory renal response after unilateral partial and whole volume high-dose irradiation of the human kidney. Eur J Cancer Part A Gen Top. 1993;29:2239–43.CrossRef
20.
go back to reference Sharma N, O’Hara J, Novick AC, Lieber M, Remer EM, Herts BR. Correlation between loss of renal function and loss of renal volume after partial nephrectomy for tumor in a solitary kidney. J Urol. 2008;179:1284–8.CrossRefPubMed Sharma N, O’Hara J, Novick AC, Lieber M, Remer EM, Herts BR. Correlation between loss of renal function and loss of renal volume after partial nephrectomy for tumor in a solitary kidney. J Urol. 2008;179:1284–8.CrossRefPubMed
21.
go back to reference Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology. 2012;79:356–60.CrossRefPubMed Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology. 2012;79:356–60.CrossRefPubMed
22.
go back to reference Tsujino K, Hashimoto T, Shimada T, Yoden E, Fujii O, Ota Y, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol. 2014;9:983–90.CrossRefPubMed Tsujino K, Hashimoto T, Shimada T, Yoden E, Fujii O, Ota Y, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol. 2014;9:983–90.CrossRefPubMed
Metadata
Title
Renal atrophy after stereotactic body radiotherapy for renal cell carcinoma
Authors
Takaya Yamamoto
Noriyuki Kadoya
Ken Takeda
Haruo Matsushita
Rei Umezawa
Kiyokazu Sato
Masaki Kubozono
Kengo Ito
Yojiro Ishikawa
Maiko Kozumi
Noriyoshi Takahashi
Yu Katagiri
Hiroshi Onishi
Keiichi Jingu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0651-5

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue