Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Does ultrasound provide any added value in breast contouring for radiotherapy after conserving surgery for cancer?

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Whole breast irradiation after conserving surgery for breast cancer requires precise definition of the target volume. The standard approach uses computed tomography (CT) images. However, since fatty breast and non-breast tissues have similar electronic densities, difficulties in differentiating between them hamper breast volume delineation. To overcome this limitation the breast contour is defined by palpation and then radio-opaque wire is put around it before the CT scan. To optimize assessment of breast margins in the cranial, caudal, medial, lateral and posterior directions, the present study evaluated palpation and CT and determined whether ultrasound (US) provided any added value.

Methods

Twenty consecutive patients were enrolled after they had provided informed consent to participating in this prospective study which was approved by the Regional Public Health Ethics Committee. Palpation and US defined breast margins and each contour was marked and outlined with a fine plastic wire. Breasts were then contoured on axial CT images using the breast window width (WW) and window level (WL) (401 and 750 Hounsfield Units –HU- respectively), at which setting the plastic wires were invisible. Then, the lung window function (WW 1601 HU; WL −300 HU) was inserted to visualize the plastic wires which were used as guidelines to contour the palpable and US breast volumes. As each wire had a different diameter, both volumes were easily defined on CT slices. Results were analyzed using descriptive statistics, percentage overlap and reproducibility measures (agreement and reliability).

Results

Volumes: US gave the largest and palpation the smallest. Agreement was best between palpation and CT. Reliability was almost perfect in all correlations. Extensions: Cranial and posterior were highest with US and smallest with palpation. Agreement was best between palpation and CT in all extensions except the cranial. Since strong to almost perfect agreement emerged for all comparisons, reliability was high.

Conclusions

US may be useful in defining the cranial and posterior extensions, mainly when tumours are localized there. This study demonstrates that the now standard radio-opaque wires around the palpable breast may not be needed in breast contouring.
Literature
1.
go back to reference Dijkema IM, Hofman P, Raaijmakers CP, Lagendijk JJ, Battermann JJ, Hillen B. Loco-regional conformal radiotherapy of the breast: delineation of the regional lymph node clinical target volumes in treatment position. Radiother Oncol. 2004;7:287–95.CrossRef Dijkema IM, Hofman P, Raaijmakers CP, Lagendijk JJ, Battermann JJ, Hillen B. Loco-regional conformal radiotherapy of the breast: delineation of the regional lymph node clinical target volumes in treatment position. Radiother Oncol. 2004;7:287–95.CrossRef
2.
go back to reference Madu CN, Quint DJ, Normolle DP, Marsh RB, Wang EJ, Pierce LJ. Definition of the supraclavicular and infraclavicular nodes: implications for three-dimensional CT-based conformal radiation therapy. Radiology. 2001;221:333–9.CrossRefPubMed Madu CN, Quint DJ, Normolle DP, Marsh RB, Wang EJ, Pierce LJ. Definition of the supraclavicular and infraclavicular nodes: implications for three-dimensional CT-based conformal radiation therapy. Radiology. 2001;221:333–9.CrossRefPubMed
3.
go back to reference Kirova YM, Castro Pena P, Dendale R, Servois V, Bollet MA, Fournier-Bidoz N, et al. Simplified rules of everyday delineation of lymph nodes areas for breast cancer radiotherapy. Br J Radiol. 2010;83:683–6.PubMedCentralCrossRefPubMed Kirova YM, Castro Pena P, Dendale R, Servois V, Bollet MA, Fournier-Bidoz N, et al. Simplified rules of everyday delineation of lymph nodes areas for breast cancer radiotherapy. Br J Radiol. 2010;83:683–6.PubMedCentralCrossRefPubMed
5.
go back to reference Nielsen MH, Berg M, Pedersen AN, Andersen K, Glavicic V, Jakobsen EH, et al. Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national guidelines and contouring atlas by the Danish breast cancer cooperative group. Acta Oncol. 2013;52:703–10.CrossRefPubMed Nielsen MH, Berg M, Pedersen AN, Andersen K, Glavicic V, Jakobsen EH, et al. Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national guidelines and contouring atlas by the Danish breast cancer cooperative group. Acta Oncol. 2013;52:703–10.CrossRefPubMed
6.
go back to reference Offersen BV, Boersma LJ, Kirkove C, Hol S, Aznar MC, Biete Sola A, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol. 2015;114:3–10.CrossRefPubMed Offersen BV, Boersma LJ, Kirkove C, Hol S, Aznar MC, Biete Sola A, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol. 2015;114:3–10.CrossRefPubMed
7.
go back to reference Cucciarelli F, Kirova YM, Palumbo I, Aristei C. Supra- and infra-clavicular lymph node delineation in breast cancer patients. A proposal deriving from a comparative study. Tumori 2015, May 12, 0(0):0 doi:10.5301/tj.5000330. Epub ahead of print Cucciarelli F, Kirova YM, Palumbo I, Aristei C. Supra- and infra-clavicular lymph node delineation in breast cancer patients. A proposal deriving from a comparative study. Tumori 2015, May 12, 0(0):0 doi:10.​5301/​tj.​5000330. Epub ahead of print
8.
go back to reference Hurkmans CW, Borger JH, Bradley RP, Russell NS, Jansen EPM, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys. 2001;50:1366–72.CrossRefPubMed Hurkmans CW, Borger JH, Bradley RP, Russell NS, Jansen EPM, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys. 2001;50:1366–72.CrossRefPubMed
9.
go back to reference Pitkänen MA, Holli KA, Ojala AT, Laippala P. Quality assurance in radiotherapy of breast cancer. Variability in planning target volume delineation. Acta Oncol. 2001;40:50–5.CrossRefPubMed Pitkänen MA, Holli KA, Ojala AT, Laippala P. Quality assurance in radiotherapy of breast cancer. Variability in planning target volume delineation. Acta Oncol. 2001;40:50–5.CrossRefPubMed
10.
go back to reference Struikmans H, Wárlám- Rodenhuis C, Stam T, Stapper G, Tersteeg RJHA, Gijsbert H, et al. Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol. 2005;76:293–9.CrossRefPubMed Struikmans H, Wárlám- Rodenhuis C, Stam T, Stapper G, Tersteeg RJHA, Gijsbert H, et al. Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol. 2005;76:293–9.CrossRefPubMed
11.
go back to reference Li XA, Tai A, Arthur DW, Buchholz TA, MacDonal S, Marks LS, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG multi-institutional and multiobserver study. Int J Radiat Oncol Biol Phys. 2009;73:944–51.PubMedCentralCrossRefPubMed Li XA, Tai A, Arthur DW, Buchholz TA, MacDonal S, Marks LS, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG multi-institutional and multiobserver study. Int J Radiat Oncol Biol Phys. 2009;73:944–51.PubMedCentralCrossRefPubMed
12.
go back to reference Castro Pena P, Kirova YM, Campana F, Dendale R, Bollet MA, Fournier-Bidoz N, et al. Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol. 2009;82:595–9.CrossRefPubMed Castro Pena P, Kirova YM, Campana F, Dendale R, Bollet MA, Fournier-Bidoz N, et al. Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol. 2009;82:595–9.CrossRefPubMed
13.
go back to reference Associazione Italiana di Radioterapia Oncologica (AIRO).Gruppo di lavoro per la patologia mammaria. La radioterapia dei tumori della mammella. Indicazioni e criteri guida, 2013. AIRO Web site. http://www.radioterapiaitalia.it Accessed 27 March 2015 Associazione Italiana di Radioterapia Oncologica (AIRO).Gruppo di lavoro per la patologia mammaria. La radioterapia dei tumori della mammella. Indicazioni e criteri guida, 2013. AIRO Web site. http://​www.​radioterapiaital​ia.​it Accessed 27 March 2015
14.
go back to reference Bentel G, Marks LB, Hardenbergh P, Prosnitz L. Variability of the location of internal mammary vessels and glandular breast tissue in breast cancer patients undergoing routine CT-based treatment planning. Int J Radiat Oncol Biol Phys. 1999;44:1017–25.CrossRefPubMed Bentel G, Marks LB, Hardenbergh P, Prosnitz L. Variability of the location of internal mammary vessels and glandular breast tissue in breast cancer patients undergoing routine CT-based treatment planning. Int J Radiat Oncol Biol Phys. 1999;44:1017–25.CrossRefPubMed
15.
go back to reference Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WPA, et al. Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue (clinical target volume breast) in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys. 2011;81:804–11.CrossRefPubMed Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WPA, et al. Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue (clinical target volume breast) in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys. 2011;81:804–11.CrossRefPubMed
16.
go back to reference Mast M, Coerkamp E, Heijenbrok M, Scholten A, Jansen W, Kouwenhoven E, et al. Target volume delineation in breast conserving radiotherapy: are co-registered CT and MR images of added value? Radiat Oncol. 2014;9:65.PubMedCentralCrossRefPubMed Mast M, Coerkamp E, Heijenbrok M, Scholten A, Jansen W, Kouwenhoven E, et al. Target volume delineation in breast conserving radiotherapy: are co-registered CT and MR images of added value? Radiat Oncol. 2014;9:65.PubMedCentralCrossRefPubMed
17.
go back to reference Valdagni R, Italia C, Montanaro P, Ciocca M, Morandi G, Salvadori B. Clinical target volume localization using conventional methods (anatomy and palpation) and ultrasonography in early breast cancer post-operative external irradiation. Radiother Oncol. 1997;42:231–7.CrossRefPubMed Valdagni R, Italia C, Montanaro P, Ciocca M, Morandi G, Salvadori B. Clinical target volume localization using conventional methods (anatomy and palpation) and ultrasonography in early breast cancer post-operative external irradiation. Radiother Oncol. 1997;42:231–7.CrossRefPubMed
18.
go back to reference Fotina I, Lütgendorf-Caucig C, Stock M, Pötter R, Georg D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol. 2012;188:160–7.CrossRefPubMed Fotina I, Lütgendorf-Caucig C, Stock M, Pötter R, Georg D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol. 2012;188:160–7.CrossRefPubMed
19.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.CrossRefPubMed
20.
go back to reference Fleiss JF. Reliability of measurement. In: Fleiss JF, editor. The design and analysis of clinical experiments. New York: John Wiley & Sons; 1986. p. S 1–33. Fleiss JF. Reliability of measurement. In: Fleiss JF, editor. The design and analysis of clinical experiments. New York: John Wiley & Sons; 1986. p. S 1–33.
21.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
22.
go back to reference Lütgendorf-Caucig C, Fotina I, Gallop-Evans E, Claude L, Lindh J, Pelz T, et al. Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma. A case study. Strahlenther Onkol. 2012;188:1025–30.CrossRefPubMed Lütgendorf-Caucig C, Fotina I, Gallop-Evans E, Claude L, Lindh J, Pelz T, et al. Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma. A case study. Strahlenther Onkol. 2012;188:1025–30.CrossRefPubMed
23.
go back to reference Van de Velde J, Vercauteren T, De Gersem W, Wouters J, Vandecasteele K, Vuye P, et al. Reliability and accuracy assessment of radiation therapy oncology group-endorsed guidelines for brachial plexus contouring. Strahlenther Onkol. 2014;190:628–35.CrossRefPubMed Van de Velde J, Vercauteren T, De Gersem W, Wouters J, Vandecasteele K, Vuye P, et al. Reliability and accuracy assessment of radiation therapy oncology group-endorsed guidelines for brachial plexus contouring. Strahlenther Onkol. 2014;190:628–35.CrossRefPubMed
24.
go back to reference Batumalai V, Koh ES, Delaney GP, Holloway LC, Jameson MG, Papadatos G, et al. Interobserver variability in clinical target volume delineation in tangential breast irradiation: a comparison between radiation oncologists and radiation therapists. Clin Oncol (R Coll Radiol). 2011;23:108–13.CrossRef Batumalai V, Koh ES, Delaney GP, Holloway LC, Jameson MG, Papadatos G, et al. Interobserver variability in clinical target volume delineation in tangential breast irradiation: a comparison between radiation oncologists and radiation therapists. Clin Oncol (R Coll Radiol). 2011;23:108–13.CrossRef
25.
go back to reference Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12:429–46.PubMed Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12:429–46.PubMed
Metadata
Title
Does ultrasound provide any added value in breast contouring for radiotherapy after conserving surgery for cancer?
Publication date
01-12-2015
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0487-4

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue