Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines

Authors: Gisela Wohlleben, Agmal Scherzad, Antje Güttler, Dirk Vordermark, Sebastian Kuger, Michael Flentje, Buelent Polat

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis.

Methods

To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA.

Results

Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy.

Conclusion

Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting.
Literature
1.
go back to reference Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.PubMedCrossRef Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.PubMedCrossRef
2.
go back to reference Bittner MI, Grosu AL. Hypoxia in Head and Neck Tumors: Characteristics and Development during Therapy. Frontiers in oncology. 2013;3:223.PubMedCentralPubMed Bittner MI, Grosu AL. Hypoxia in Head and Neck Tumors: Characteristics and Development during Therapy. Frontiers in oncology. 2013;3:223.PubMedCentralPubMed
3.
go back to reference Thorwarth D, Monnich D, Zips D. Methodological aspects on hypoxia PET acquisition and image processing. Q J Nucl Med Mol Imaging. 2013;57(3):235–43.PubMed Thorwarth D, Monnich D, Zips D. Methodological aspects on hypoxia PET acquisition and image processing. Q J Nucl Med Mol Imaging. 2013;57(3):235–43.PubMed
4.
go back to reference Halmos GB, Bruine De Bruin L, Langendijk JA, Van Der Laan BF, Pruim J, Steenbakkers RJ. Head and neck tumor hypoxia imaging by 18 F-fluoroazomycin-arabinoside (18 F-FAZA)-PET: a review. Clin Nucl Med. 2014;39(1):44–8.PubMedCrossRef Halmos GB, Bruine De Bruin L, Langendijk JA, Van Der Laan BF, Pruim J, Steenbakkers RJ. Head and neck tumor hypoxia imaging by 18 F-fluoroazomycin-arabinoside (18 F-FAZA)-PET: a review. Clin Nucl Med. 2014;39(1):44–8.PubMedCrossRef
5.
go back to reference Ostheimer C, Bache M, Guttler A, Kotzsch M, Vordermark D. A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol. 2014;190(3):276–82.PubMedCrossRef Ostheimer C, Bache M, Guttler A, Kotzsch M, Vordermark D. A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol. 2014;190(3):276–82.PubMedCrossRef
6.
go back to reference Said HM, Hagemann C, Staab A, Stojic J, Kuhnel S, Vince GH, et al. Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1alpha in human glioma in vitro and in vivo. Radiother Oncol. 2007;83(3):398–405.PubMedCrossRef Said HM, Hagemann C, Staab A, Stojic J, Kuhnel S, Vince GH, et al. Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1alpha in human glioma in vitro and in vivo. Radiother Oncol. 2007;83(3):398–405.PubMedCrossRef
7.
go back to reference Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 2008;9(4):342–51.PubMedCrossRef Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 2008;9(4):342–51.PubMedCrossRef
8.
go back to reference Bache M, Reddemann R, Said HM, Holzhausen HJ, Taubert H, Becker A, et al. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys. 2006;66(5):1481–7.PubMedCrossRef Bache M, Reddemann R, Said HM, Holzhausen HJ, Taubert H, Becker A, et al. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys. 2006;66(5):1481–7.PubMedCrossRef
9.
go back to reference Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer. 2008;8(3):212–26.PubMedCentralPubMedCrossRef Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer. 2008;8(3):212–26.PubMedCentralPubMedCrossRef
11.
go back to reference Petrik D, Lavori PW, Cao H, Zhu Y, Wong P, Christofferson E, et al. Plasma osteopontin is an independent prognostic marker for head and neck cancers. J Clin Oncol. 2006;24(33):5291–7.PubMedCrossRef Petrik D, Lavori PW, Cao H, Zhu Y, Wong P, Christofferson E, et al. Plasma osteopontin is an independent prognostic marker for head and neck cancers. J Clin Oncol. 2006;24(33):5291–7.PubMedCrossRef
12.
go back to reference Mack PC, Redman MW, Chansky K, Williamson SK, Farneth NC, Lara Jr PN, et al. Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol. 2008;26(29):4771–6.PubMedCentralPubMedCrossRef Mack PC, Redman MW, Chansky K, Williamson SK, Farneth NC, Lara Jr PN, et al. Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol. 2008;26(29):4771–6.PubMedCentralPubMedCrossRef
13.
go back to reference Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 2005;6(10):757–64.PubMedCrossRef Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 2005;6(10):757–64.PubMedCrossRef
14.
go back to reference Guttler A, Giebler M, Cuno P, Wichmann H, Kessler J, Ostheimer C, et al. Osteopontin and splice variant expression level in human malignant glioma: radiobiologic effects and prognosis after radiotherapy. Radiother Oncol. 2013;108(3):535–40.PubMedCrossRef Guttler A, Giebler M, Cuno P, Wichmann H, Kessler J, Ostheimer C, et al. Osteopontin and splice variant expression level in human malignant glioma: radiobiologic effects and prognosis after radiotherapy. Radiother Oncol. 2013;108(3):535–40.PubMedCrossRef
15.
go back to reference Likui W, Hong W, Shuwen Z. Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg. 2010;14(1):74–81.PubMedCrossRef Likui W, Hong W, Shuwen Z. Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg. 2010;14(1):74–81.PubMedCrossRef
16.
go back to reference Snitcovsky I, Leitao GM, Pasini FS, Brunialti KC, Mangone FR, Maistro S, et al. Plasma osteopontin levels in patients with head and neck cancer undergoing chemoradiotherapy. Archives of otolaryngology--head & neck surgery. 2009;135(8):807–11.CrossRef Snitcovsky I, Leitao GM, Pasini FS, Brunialti KC, Mangone FR, Maistro S, et al. Plasma osteopontin levels in patients with head and neck cancer undergoing chemoradiotherapy. Archives of otolaryngology--head & neck surgery. 2009;135(8):807–11.CrossRef
17.
go back to reference Lim AM, Rischin D, Fisher R, Cao H, Kwok K, Truong D, et al. Prognostic Significance of Plasma Osteopontin in Patients with Locoregionally Advanced Head and Neck Squamous Cell Carcinoma Treated on TROG 02.02 Phase III Trial. Clin Cancer Res. 2012;18(1):301–7.PubMedCentralPubMedCrossRef Lim AM, Rischin D, Fisher R, Cao H, Kwok K, Truong D, et al. Prognostic Significance of Plasma Osteopontin in Patients with Locoregionally Advanced Head and Neck Squamous Cell Carcinoma Treated on TROG 02.02 Phase III Trial. Clin Cancer Res. 2012;18(1):301–7.PubMedCentralPubMedCrossRef
18.
go back to reference Caradec J, Sirab N, Keumeugni C, Moutereau S, Chimingqi M, Matar C, et al. 'Desperate house genes': the dramatic example of hypoxia. Br J Cancer. 2010;102(6):1037–43.PubMedCentralPubMedCrossRef Caradec J, Sirab N, Keumeugni C, Moutereau S, Chimingqi M, Matar C, et al. 'Desperate house genes': the dramatic example of hypoxia. Br J Cancer. 2010;102(6):1037–43.PubMedCentralPubMedCrossRef
19.
go back to reference Zhong H, Simons JW. Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun. 1999;259(3):523–6.PubMedCrossRef Zhong H, Simons JW. Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun. 1999;259(3):523–6.PubMedCrossRef
20.
go back to reference Polat B, Wohlleben G, Katzer A, Djuzenova CS, Technau A, Flentje M. Influence of osteopontin silencing on survival and migration of lung cancer cells. Strahlenther Onkol. 2013;189(1):62–7.PubMedCrossRef Polat B, Wohlleben G, Katzer A, Djuzenova CS, Technau A, Flentje M. Influence of osteopontin silencing on survival and migration of lung cancer cells. Strahlenther Onkol. 2013;189(1):62–7.PubMedCrossRef
21.
go back to reference Hahne JC, Meyer SR, Kranke P, Dietl J, Guckenberger M, Polat B, et al. Studies on the role of osteopontin-1 in endometrial cancer cell lines. Strahlenther Onkol. 2013;189(12):1040–8.PubMedCrossRef Hahne JC, Meyer SR, Kranke P, Dietl J, Guckenberger M, Polat B, et al. Studies on the role of osteopontin-1 in endometrial cancer cell lines. Strahlenther Onkol. 2013;189(12):1040–8.PubMedCrossRef
22.
go back to reference Hahnel A, Wichmann H, Kappler M, Kotzsch M, Vordermark D, Taubert H, et al. Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells. Radiat Oncol. 2010;5:82.PubMedCentralPubMedCrossRef Hahnel A, Wichmann H, Kappler M, Kotzsch M, Vordermark D, Taubert H, et al. Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells. Radiat Oncol. 2010;5:82.PubMedCentralPubMedCrossRef
23.
go back to reference Chang SH, Minai-Tehrani A, Shin JY, Park S, Kim JE, Yu KN, et al. Beclin1-induced Autophagy Abrogates Radioresistance of Lung Cancer Cells by Suppressing Osteopontin. J Radiat Res. 2012;53(3):422–32.PubMed Chang SH, Minai-Tehrani A, Shin JY, Park S, Kim JE, Yu KN, et al. Beclin1-induced Autophagy Abrogates Radioresistance of Lung Cancer Cells by Suppressing Osteopontin. J Radiat Res. 2012;53(3):422–32.PubMed
24.
go back to reference Le QT, Kong C, Lavori PW, O'Byrne K, Erler JT, Huang X, et al. Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2007;69(1):167–75.PubMedCrossRef Le QT, Kong C, Lavori PW, O'Byrne K, Erler JT, Huang X, et al. Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2007;69(1):167–75.PubMedCrossRef
25.
go back to reference Le QT, Chen E, Salim A, Cao H, Kong CS, Whyte R, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12(5):1507–14.PubMedCrossRef Le QT, Chen E, Salim A, Cao H, Kong CS, Whyte R, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12(5):1507–14.PubMedCrossRef
26.
go back to reference Bache M, Rot S, Kessler J, Guttler A, Wichmann H, Greither T, et al. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma. Oncol Rep. 2015;33(6):3155–61.PubMed Bache M, Rot S, Kessler J, Guttler A, Wichmann H, Greither T, et al. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma. Oncol Rep. 2015;33(6):3155–61.PubMed
27.
go back to reference Hui EP, Sung FL, Yu BK, Wong CS, Ma BB, Lin X, et al. Plasma osteopontin, hypoxia, and response to radiotherapy in nasopharyngeal cancer. Clin Cancer Res. 2008;14(21):7080–7.PubMedCrossRef Hui EP, Sung FL, Yu BK, Wong CS, Ma BB, Lin X, et al. Plasma osteopontin, hypoxia, and response to radiotherapy in nasopharyngeal cancer. Clin Cancer Res. 2008;14(21):7080–7.PubMedCrossRef
28.
go back to reference Zhu Y, Denhardt DT, Cao H, Sutphin PD, Koong AC, Giaccia AJ, et al. Hypoxia upregulates osteopontin expression in NIH-3 T3 cells via a Ras-activated enhancer. Oncogene. 2005;24(43):6555–63.PubMed Zhu Y, Denhardt DT, Cao H, Sutphin PD, Koong AC, Giaccia AJ, et al. Hypoxia upregulates osteopontin expression in NIH-3 T3 cells via a Ras-activated enhancer. Oncogene. 2005;24(43):6555–63.PubMed
Metadata
Title
Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines
Authors
Gisela Wohlleben
Agmal Scherzad
Antje Güttler
Dirk Vordermark
Sebastian Kuger
Michael Flentje
Buelent Polat
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0473-x

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue