Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

A rat model of radiation injury in the mandibular area

Authors: Tonje Sønstevold, Anne Christine Johannessen, Linda Stuhr

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Radiation technology focuses on delivering the radiation as precisely as possible to the tumor, nonetheless both acute and long-term damage to surrounding normal tissue may develop. Injuries to the surrounding normal tissue after radiotherapy of head and neck cancer are difficult to manage. An animal model is needed to elucidate good treatment modalities. The aim of this study was to establish a rat model where a certain radiation dose gives reproducible tissue reactions in the mandibular area corresponding to injuries obtained in humans.

Method

The left mandible of male Sprague Dawley rats was irradiated by external radiotherapy (single fraction 15 Gy, total dose 75 Gy) every second week five times. Endpoint was six weeks after last radiation treatment, and the test group was compared to non-irradiated controls. Morphological alterations of the soft tissues, bone and tooth formation, as well as alterations of salivation, vascularity and collagen content were assessed. An unpaired, non-parametric Mann–Whitney test was used to compare the statistical differences between the groups.

Results

Analysis of the soft tissues and mandible within the radiation field revealed severe unilateral alopecia and dermatitis of the skin, extensive inflammation of the submandibular gland with loss of serous secretory cells, hyperkeratinization and dense connective fiber bundles of the gingival tissue, and disturbed tooth development with necrosis of the pulp. Production of saliva and the vascularity of the soft tissues were significantly reduced. Furthermore, the collagen fibril diameter was larger and the collagen network denser compared to non-irradiated control rats.

Conclusion

We have established an animal model of radiation injury demonstrating physiological and histological changes corresponding to human radiation injuries, which can be used for future therapeutic evaluations.
Literature
3.
go back to reference Marsh Robert de W, Samuel J. Essentials of clinical oncology. 1st ed. USA: The McGraw-Hill Medical; 2007. Marsh Robert de W, Samuel J. Essentials of clinical oncology. 1st ed. USA: The McGraw-Hill Medical; 2007.
4.
go back to reference Marx RE, Johnson RP. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol. 1987;64(4):379–90.PubMedCrossRef Marx RE, Johnson RP. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol. 1987;64(4):379–90.PubMedCrossRef
6.
go back to reference Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4(9):529–36.PubMedCrossRef Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4(9):529–36.PubMedCrossRef
7.
go back to reference Feldmeier JJ. Hyperbaric oxygen therapy and delayed radiation injuries (soft tissue and bony necrosis): 2012 update. Undersea Hyperb Med. 2012;39(6):1121–39.PubMed Feldmeier JJ. Hyperbaric oxygen therapy and delayed radiation injuries (soft tissue and bony necrosis): 2012 update. Undersea Hyperb Med. 2012;39(6):1121–39.PubMed
8.
go back to reference Epstein JB, Wong FL, Stevenson-Moore P. Osteoradionecrosis: clinical experience and a proposal for classification. J Oral Maxillofac Surg. 1987;45(2):104–10.PubMedCrossRef Epstein JB, Wong FL, Stevenson-Moore P. Osteoradionecrosis: clinical experience and a proposal for classification. J Oral Maxillofac Surg. 1987;45(2):104–10.PubMedCrossRef
9.
go back to reference Lee IJ, Koom WS, Lee CG, Kim YB, Yoo SW, Keum KC, et al. Risk factors and dose-effect relationship for mandibular osteoradionecrosis in oral and oropharyngeal cancer patients. Int J Radiat Oncol, Biol, Phys. 2009;75(4):1084–91. doi:10.1016/j.ijrobp.2008.12.052.CrossRef Lee IJ, Koom WS, Lee CG, Kim YB, Yoo SW, Keum KC, et al. Risk factors and dose-effect relationship for mandibular osteoradionecrosis in oral and oropharyngeal cancer patients. Int J Radiat Oncol, Biol, Phys. 2009;75(4):1084–91. doi:10.​1016/​j.​ijrobp.​2008.​12.​052.CrossRef
13.
go back to reference Muhonen A, Muhonen J, Lindholm TC, Minn H, Klossner J, Kulmala J, et al. Osteodistraction of a previously irradiated mandible with or without adjunctive hyperbaric oxygenation: an experimental study in rabbits. Int J Oral Maxillofac Surg. 2002;31(5):519–24. doi:10.1054/ijom.2002.0257.PubMedCrossRef Muhonen A, Muhonen J, Lindholm TC, Minn H, Klossner J, Kulmala J, et al. Osteodistraction of a previously irradiated mandible with or without adjunctive hyperbaric oxygenation: an experimental study in rabbits. Int J Oral Maxillofac Surg. 2002;31(5):519–24. doi:10.​1054/​ijom.​2002.​0257.PubMedCrossRef
18.
19.
go back to reference Thames Jr HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol, Biol, Phys. 1982;8(2):219–26.CrossRef Thames Jr HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol, Biol, Phys. 1982;8(2):219–26.CrossRef
20.
go back to reference Schultze-Mosgau S, Lehner B, Rodel F, Wehrhan F, Amann K, Kopp J, et al. Expression of bone morphogenic protein 2/4, transforming growth factor-beta1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis. Int J Radiat Oncol, Biol, Phys. 2005;61(4):1189–96. doi:10.1016/j.ijrobp.2004.12.008.CrossRef Schultze-Mosgau S, Lehner B, Rodel F, Wehrhan F, Amann K, Kopp J, et al. Expression of bone morphogenic protein 2/4, transforming growth factor-beta1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis. Int J Radiat Oncol, Biol, Phys. 2005;61(4):1189–96. doi:10.​1016/​j.​ijrobp.​2004.​12.​008.CrossRef
23.
go back to reference Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg. 1983;41(5):283–8.PubMedCrossRef Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg. 1983;41(5):283–8.PubMedCrossRef
26.
Metadata
Title
A rat model of radiation injury in the mandibular area
Authors
Tonje Sønstevold
Anne Christine Johannessen
Linda Stuhr
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0432-6

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue