Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Evaluation of the Machine Performance Check application for TrueBeam Linac

Authors: Alessandro Clivio, Eugenio Vanetti, Steven Rose, Giorgia Nicolini, Maria F Belosi, Luca Cozzi, Christof Baltes, Antonella Fogliata

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Machine Performance Check (MPC) is an application to verify geometry and beam performances of TrueBeam Linacs, through automated checks based on their kV-MV imaging systems. In this study, preliminary tests with MPC were analyzed using all photon beam energies of our TrueBeam, comparing whenever possible with external independent checks.

Methods

Data acquisition comprises a series of 39 images (12 with kV and 27 with MV detector) acquired at predefined positions without and with the IsoCal phantom in the beam, and with particular MLC pattern settings. MPC performs geometric and dosimetric checks. The geometric checks intend to test the treatment isocenter size and its coincidence with imaging devices, the positioning accuracy of the imaging systems, the collimator, the gantry, the jaws, the MLC leaves and the couch position. The dosimetric checks: refer to a reference MV image and give the beam output, uniformity and center change relative to the reference. MPC data were acquired during 10 repetitions on different consecutive days.
Alternative independent checks were performed. Geometric: routine mechanical tests, Winston-Lutz test for treatment isocenter radius. Dosimetric: the 2D array StarCheck (PTW) was used just after the MPC data acquisition.

Results

Results were analyzed for 6, 10, 15 MV flattened, and 6, 10 MV FFF beams. Geometric checks: treatment isocenter was between 0.31 ± 0.01 mm and 0.42 ± 0.02 mm with MPC, compared to 0.27 ± 0.01 mm averaged on all energies with the Winston-Lutz test. Coincidence of kV and MV imaging isocenters was within 0.36 ± 0.0 and 0.43 ± 0.06 mm, respectively (0.4 ± 0.1 mm with external tests). Positioning accuracy of MLC was within 0.5 mm; accuracy of jaws was 0.04 ± 0.02, 0.10 ± 0.05, −1.01 ± 0.03, 0.92 ± 0.04 mm for X1, X2, Y1, Y2 jaws, respectively, with MPC. Dosimetric tests: the output stability relative to the baseline was in average 0.15 ± 0.07% for MPC to compare with 0.3 ± 0.2% with the independent measurement.

Conclusions

MPC proved to be a reliable, fast and easy to use method for checking the machine performances on both geometric and dosimetric aspects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.PubMedCrossRef Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.PubMedCrossRef
2.
go back to reference International Electrotechnical Commission Publication 976. Medical electron accelerators-functional performance characteristics. 1989. International Electrotechnical Commission Publication 976. Medical electron accelerators-functional performance characteristics. 1989.
3.
go back to reference International Electrotechnical Commission Publication 977. Medical electron accelerators in the range 1 MeV-50 MeV—guidelines for functional performance characteristics. 1989. International Electrotechnical Commission Publication 977. Medical electron accelerators in the range 1 MeV-50 MeV—guidelines for functional performance characteristics. 1989.
4.
go back to reference Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21:581–618.PubMedCrossRef Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21:581–618.PubMedCrossRef
5.
go back to reference Fogliata A, Garcia R, Knöös T, Nicolini G, Clivio A, Vanetti E, et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys. 2012;39:6455–64.PubMedCrossRef Fogliata A, Garcia R, Knöös T, Nicolini G, Clivio A, Vanetti E, et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys. 2012;39:6455–64.PubMedCrossRef
6.
go back to reference Bissonnette JP, Balter P, Dong L, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39:1946–63.PubMedCrossRef Bissonnette JP, Balter P, Dong L, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39:1946–63.PubMedCrossRef
7.
go back to reference Yoo S, Kim GY, Hammoud R, Elder E, Pawilicki T, Guan H, et al. A quality assurance program for the on-board imager. Med Phys. 2006;33:4431–47.PubMedCrossRef Yoo S, Kim GY, Hammoud R, Elder E, Pawilicki T, Guan H, et al. A quality assurance program for the on-board imager. Med Phys. 2006;33:4431–47.PubMedCrossRef
8.
go back to reference Grimm J, Grimm SYL, Das IJ, Zhu Y, Yeo I, Xue J, et al. A quality assurance method with submillimeter accuracy for stereotactic linear accelerators. J Appl Clin Med Phys. 2011;12:182–98. Grimm J, Grimm SYL, Das IJ, Zhu Y, Yeo I, Xue J, et al. A quality assurance method with submillimeter accuracy for stereotactic linear accelerators. J Appl Clin Med Phys. 2011;12:182–98.
9.
go back to reference Nicolini G, Vanetti E, Clivio A, Fogliata A, Boka G, Cozzi L. Testing the portal imager GLAaS algorithm for machine quality assurance. Radiat Oncol. 2008;3:14.PubMedCentralPubMedCrossRef Nicolini G, Vanetti E, Clivio A, Fogliata A, Boka G, Cozzi L. Testing the portal imager GLAaS algorithm for machine quality assurance. Radiat Oncol. 2008;3:14.PubMedCentralPubMedCrossRef
10.
go back to reference Nicolini G, Clivio A, Vanetti E, Krauss H, Fenoglietto P, Cozzi L, et al. Evlauation of an aSi-EPID with flattening filter free beams: applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc. Med Phys. 2013;40:111719.PubMedCrossRef Nicolini G, Clivio A, Vanetti E, Krauss H, Fenoglietto P, Cozzi L, et al. Evlauation of an aSi-EPID with flattening filter free beams: applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc. Med Phys. 2013;40:111719.PubMedCrossRef
11.
go back to reference Clivio A, Nicolini G, Vanetti E, Fogliata A, Cozzi L. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities. Radiat Oncol. 2011;6:129.PubMedCentralPubMedCrossRef Clivio A, Nicolini G, Vanetti E, Fogliata A, Cozzi L. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities. Radiat Oncol. 2011;6:129.PubMedCentralPubMedCrossRef
12.
go back to reference Swiss Society of Radiobiology and Medical Physics: report number 11. Quality control of medical electron accelerators; 2003. [ISBN 3 908 125 34–0]. Swiss Society of Radiobiology and Medical Physics: report number 11. Quality control of medical electron accelerators; 2003. [ISBN 3 908 125 340].
13.
go back to reference Gao S, Du W, Balter P, Munro P, Jeung A. Evaluation of IsoCal geometric calibration system for Varian Linacs equipped with on-board imager and electronic portal imaging device imaging systems. J Appl Clin Med Phys. 2014;15:164–81. Gao S, Du W, Balter P, Munro P, Jeung A. Evaluation of IsoCal geometric calibration system for Varian Linacs equipped with on-board imager and electronic portal imaging device imaging systems. J Appl Clin Med Phys. 2014;15:164–81.
14.
go back to reference Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14:373–81.PubMedCrossRef Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14:373–81.PubMedCrossRef
Metadata
Title
Evaluation of the Machine Performance Check application for TrueBeam Linac
Authors
Alessandro Clivio
Eugenio Vanetti
Steven Rose
Giorgia Nicolini
Maria F Belosi
Luca Cozzi
Christof Baltes
Antonella Fogliata
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0381-0

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue