Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Bone density as a marker for local response to radiotherapy of spinal bone metastases in women with breast cancer: a retrospective analysis

Authors: Robert Foerster, Christian Eisele, Thomas Bruckner, Tilman Bostel, Ingmar Schlampp, Robert Wolf, Juergen Debus, Harald Rief

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

We designed this study to quantify the effects of radiotherapy (RT) on bone density as a local response in spinal bone metastases of women with breast cancer and, secondly, to establish bone density as an accurate and reproducible marker for assessment of local response to RT in spinal bone metastases.

Methods

We retrospectively assessed 135 osteolytic spinal metastases in 115 women with metastatic breast cancer treated at our department between January 2000 and January 2012. Primary endpoint was to compare bone density in the bone metastases before, 3 months after and 6 months after RT. Bone density was measured in Hounsfield units (HU) in computed tomography scans. We calculated mean values in HU and the standard deviation (SD) as a measurement of bone density before, 3 months and 6 months after RT. T-test was used for statistical analysis of difference in bone density as well as for univariate analysis of prognostic factors for difference in bone density 3 and 6 months after RT.

Results

Mean bone density was 194.8 HU ± SD 123.0 at baseline. Bone density increased significantly by a mean of 145.8 HU ± SD 139.4 after 3 months (p = .0001) and by 250.3 HU ± SD 147.1 after 6 months (p < .0001). Women receiving bisphosphonates showed a tendency towards higher increase in bone density in the metastases after 3 months (152.6 HU ± SD 141.9 vs. 76.0 HU ± SD 86.1; p = .069) and pathological fractures before RT were associated with a significantly higher increase in bone density after 3 months (202.3 HU ± SD 161.9 vs. 130.3 HU ± SD 129.2; p = .013). Concomitant chemotherapy (ChT) or endocrine therapy (ET), hormone receptor status, performance score, applied overall RT dose and prescription of a surgical corset did not correlate with a difference in bone density after RT.

Conclusions

Bone density measurement in HU is a practicable and reproducible method for assessment of local RT response in osteolytic metastases in breast cancer. Our analysis demonstrated an excellent local response within metastases after palliative RT.
Literature
1.
go back to reference Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P, et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;79:965–76.CrossRefPubMed Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P, et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;79:965–76.CrossRefPubMed
2.
go back to reference Whyne CM, Hu SS, Lotz JC. Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J Spinal Disord Tech. 2003;16:180–5.CrossRefPubMed Whyne CM, Hu SS, Lotz JC. Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J Spinal Disord Tech. 2003;16:180–5.CrossRefPubMed
3.
go back to reference Janjan N, Lutz ST, Bedwinek JM, Hartsell WF, Ng A, Pieters Jr RS, et al. Therapeutic guidelines for the treatment of bone metastasis: a report from the American College of Radiology Appropriateness Criteria Expert Panel on Radiation Oncology. J Palliat Med. 2009;12:417–26.CrossRefPubMed Janjan N, Lutz ST, Bedwinek JM, Hartsell WF, Ng A, Pieters Jr RS, et al. Therapeutic guidelines for the treatment of bone metastasis: a report from the American College of Radiology Appropriateness Criteria Expert Panel on Radiation Oncology. J Palliat Med. 2009;12:417–26.CrossRefPubMed
4.
go back to reference Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol). 2012;24:112–24.CrossRef Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol). 2012;24:112–24.CrossRef
5.
go back to reference Mitera G, Probyn L, Ford M, Donovan A, Rubenstein J, Finkelstein J, et al. Correlation of computed tomography imaging features with pain response in patients with spine metastases after radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81:827–30.CrossRefPubMed Mitera G, Probyn L, Ford M, Donovan A, Rubenstein J, Finkelstein J, et al. Correlation of computed tomography imaging features with pain response in patients with spine metastases after radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81:827–30.CrossRefPubMed
6.
go back to reference Wu JS, Monk G, Clark T, Robinson J, Eigl BJ, Hagen N. Palliative radiotherapy improves pain and reduces functional interference in patients with painful bone metastases: a quality assurance study. Clin Oncol (R Coll Radiol). 2006;18:539–44.CrossRef Wu JS, Monk G, Clark T, Robinson J, Eigl BJ, Hagen N. Palliative radiotherapy improves pain and reduces functional interference in patients with painful bone metastases: a quality assurance study. Clin Oncol (R Coll Radiol). 2006;18:539–44.CrossRef
7.
go back to reference Souchon R, Feyer P, Thomssen C, Fehm T, Diel I, Nitz U, et al. Clinical Recommendations of DEGRO and AGO on Preferred Standard Palliative Radiotherapy of Bone and Cerebral Metastases, Metastatic Spinal Cord Compression, and Leptomeningeal Carcinomatosis in Breast Cancer. Breast Care (Basel). 2010;5:401–7.CrossRef Souchon R, Feyer P, Thomssen C, Fehm T, Diel I, Nitz U, et al. Clinical Recommendations of DEGRO and AGO on Preferred Standard Palliative Radiotherapy of Bone and Cerebral Metastases, Metastatic Spinal Cord Compression, and Leptomeningeal Carcinomatosis in Breast Cancer. Breast Care (Basel). 2010;5:401–7.CrossRef
8.
go back to reference Oda I, Abumi K, Lu D, Shono Y, Kaneda K. Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine (Phila Pa 1976). 1996;21:1423–9.CrossRef Oda I, Abumi K, Lu D, Shono Y, Kaneda K. Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine (Phila Pa 1976). 1996;21:1423–9.CrossRef
9.
go back to reference Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K, et al. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer. 2013;21:3279–86.CrossRefPubMed Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K, et al. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer. 2013;21:3279–86.CrossRefPubMed
10.
go back to reference Weber MH, Burch S, Buckley J, Schmidt MH, Fehlings MG, Vrionis FD, et al. Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol. 2011;38:5–12.PubMed Weber MH, Burch S, Buckley J, Schmidt MH, Fehlings MG, Vrionis FD, et al. Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol. 2011;38:5–12.PubMed
11.
go back to reference Foerster R, Habermehl D, Bruckner T, Bostel T, Schlampp I, Welzel T, et al. Spinal bone metastases in gynecologic malignancies: a retrospective analysis of stability, prognostic factors and survival. Radiat Oncol. 2014;9:194.CrossRefPubMedCentralPubMed Foerster R, Habermehl D, Bruckner T, Bostel T, Schlampp I, Welzel T, et al. Spinal bone metastases in gynecologic malignancies: a retrospective analysis of stability, prognostic factors and survival. Radiat Oncol. 2014;9:194.CrossRefPubMedCentralPubMed
12.
go back to reference Rief H, Bischof M, Bruckner T, Welzel T, Askoxylakis V, Rieken S, et al. The stability of osseous metastases of the spine in lung cancer–a retrospective analysis of 338 cases. Radiat Oncol. 2013;8:200.CrossRefPubMedCentralPubMed Rief H, Bischof M, Bruckner T, Welzel T, Askoxylakis V, Rieken S, et al. The stability of osseous metastases of the spine in lung cancer–a retrospective analysis of 338 cases. Radiat Oncol. 2013;8:200.CrossRefPubMedCentralPubMed
13.
go back to reference Schlampp I, Rieken S, Habermehl D, Bruckner T, Forster R, Debus J, et al. Stability of spinal bone metastases in breast cancer after radiotherapy: a retrospective analysis of 157 cases. Strahlenther Onkol. 2014;190:792–7.CrossRefPubMedCentralPubMed Schlampp I, Rieken S, Habermehl D, Bruckner T, Forster R, Debus J, et al. Stability of spinal bone metastases in breast cancer after radiotherapy: a retrospective analysis of 157 cases. Strahlenther Onkol. 2014;190:792–7.CrossRefPubMedCentralPubMed
14.
go back to reference Rief H, Petersen LC, Omlor G, Akbar M, Bruckner T, Rieken S, et al. The effect of resistance training during radiotherapy on spinal bone metastases in cancer patients - A randomized trial. Radiother Oncol. 2014;112(1):133–9.CrossRefPubMed Rief H, Petersen LC, Omlor G, Akbar M, Bruckner T, Rieken S, et al. The effect of resistance training during radiotherapy on spinal bone metastases in cancer patients - A randomized trial. Radiother Oncol. 2014;112(1):133–9.CrossRefPubMed
15.
go back to reference Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine (Phila Pa 1976). 1997;22:239–45.CrossRef Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine (Phila Pa 1976). 1997;22:239–45.CrossRef
16.
go back to reference Koswig S, Budach V. Remineralization and pain relief in bone metastases after after different radiotherapy fractions (10 times 3 Gy vs. 1 time 8 Gy). A prospective study. Strahlenther Onkol. 1999;175:500–8.CrossRefPubMed Koswig S, Budach V. Remineralization and pain relief in bone metastases after after different radiotherapy fractions (10 times 3 Gy vs. 1 time 8 Gy). A prospective study. Strahlenther Onkol. 1999;175:500–8.CrossRefPubMed
17.
go back to reference Chow E, Holden L, Rubenstein J, Christakis M, Sixel K, Vidmar M, et al. Computed tomography (CT) evaluation of breast cancer patients with osteolytic bone metastases undergoing palliative radiotherapy–a feasibility study. Radiother Oncol. 2004;70:291–4.CrossRefPubMed Chow E, Holden L, Rubenstein J, Christakis M, Sixel K, Vidmar M, et al. Computed tomography (CT) evaluation of breast cancer patients with osteolytic bone metastases undergoing palliative radiotherapy–a feasibility study. Radiother Oncol. 2004;70:291–4.CrossRefPubMed
18.
go back to reference Xie CM, Liu XW, Li H, Zhang R, Mo YX, Li JP, et al. Computed tomographic findings of skull base bony changes after radiotherapy for nasopharyngeal carcinoma: implications for local recurrence. J Otolaryngol Head Neck Surg. 2011;40:300–10.PubMed Xie CM, Liu XW, Li H, Zhang R, Mo YX, Li JP, et al. Computed tomographic findings of skull base bony changes after radiotherapy for nasopharyngeal carcinoma: implications for local recurrence. J Otolaryngol Head Neck Surg. 2011;40:300–10.PubMed
19.
go back to reference Krempien R, Huber PE, Harms W, Treiber M, Wannenmacher M, Krempien B. Combination of early bisphosphonate administration and irradiation leads to improved remineralization and restabilization of osteolytic bone metastases in an animal tumor model. Cancer. 2003;98:1318–24.CrossRefPubMed Krempien R, Huber PE, Harms W, Treiber M, Wannenmacher M, Krempien B. Combination of early bisphosphonate administration and irradiation leads to improved remineralization and restabilization of osteolytic bone metastases in an animal tumor model. Cancer. 2003;98:1318–24.CrossRefPubMed
20.
go back to reference Ural AU, Avcu F, Baran Y. Bisphosphonate treatment and radiotherapy in metastatic breast cancer. Med Oncol. 2008;25:350–5.CrossRefPubMed Ural AU, Avcu F, Baran Y. Bisphosphonate treatment and radiotherapy in metastatic breast cancer. Med Oncol. 2008;25:350–5.CrossRefPubMed
21.
go back to reference Kouloulias V, Matsopoulos G, Kouvaris J, Dardoufas C, Bottomley A, Varela M, et al. Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management of osteolytic metastases from breast cancer: clinical evaluation, biochemical markers, quality of life, and monitoring of recalcification using assessments of gray-level histogram in plain radiographs. Int J Radiat Oncol Biol Phys. 2003;57:143–57.CrossRefPubMed Kouloulias V, Matsopoulos G, Kouvaris J, Dardoufas C, Bottomley A, Varela M, et al. Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management of osteolytic metastases from breast cancer: clinical evaluation, biochemical markers, quality of life, and monitoring of recalcification using assessments of gray-level histogram in plain radiographs. Int J Radiat Oncol Biol Phys. 2003;57:143–57.CrossRefPubMed
22.
go back to reference Ural AU, Avcu F, Candir M, Guden M, Ozcan MA. In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells. Breast Cancer Res. 2006;8:R52.CrossRefPubMedCentralPubMed Ural AU, Avcu F, Candir M, Guden M, Ozcan MA. In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells. Breast Cancer Res. 2006;8:R52.CrossRefPubMedCentralPubMed
23.
go back to reference Algur E, Macklis RM, Hafeli UO. Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines. Int J Radiat Oncol Biol Phys. 2005;61:535–42.CrossRefPubMed Algur E, Macklis RM, Hafeli UO. Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines. Int J Radiat Oncol Biol Phys. 2005;61:535–42.CrossRefPubMed
24.
go back to reference Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J, et al. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol. 2008;26:1051–7.CrossRefPubMed Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J, et al. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol. 2008;26:1051–7.CrossRefPubMed
25.
go back to reference Lustberg MB, Reinbolt RE, Shapiro CL. Bone health in adult cancer survivorship. J Clin Oncol. 2012;30:3665–74.CrossRefPubMed Lustberg MB, Reinbolt RE, Shapiro CL. Bone health in adult cancer survivorship. J Clin Oncol. 2012;30:3665–74.CrossRefPubMed
26.
go back to reference Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med. 1992;326:852–6.CrossRefPubMed Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med. 1992;326:852–6.CrossRefPubMed
27.
go back to reference Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol. 2001;19:3306–11.PubMed Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol. 2001;19:3306–11.PubMed
Metadata
Title
Bone density as a marker for local response to radiotherapy of spinal bone metastases in women with breast cancer: a retrospective analysis
Authors
Robert Foerster
Christian Eisele
Thomas Bruckner
Tilman Bostel
Ingmar Schlampp
Robert Wolf
Juergen Debus
Harald Rief
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0368-x

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue