Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

CAPIRI-IMRT: a phase II study of concurrent capecitabine and irinotecan with intensity-modulated radiation therapy for the treatment of recurrent rectal cancer

Authors: Gang Cai, Ji Zhu, Joshua D Palmer, Ye Xu, Weigang Hu, Weilie Gu, Sanjun Cai, Zhen Zhang

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

This study investigated the local effect and acute toxicity of irinotecan and capecitabine with concurrent intensity-modulated radiation therapy (IMRT) for the treatment of recurrent rectal cancer without prior pelvic irradiation.

Methods

Seventy-one patients diagnosed with recurrent rectal cancer who did not previously receive pelvic irradiation were treated in our hospital from October 2009 to July 2012. Radiotherapy was delivered to the pelvis, and IMRT of 45 Gy (1.8 Gy per fraction), followed by a boost of 10 Gy to 16 Gy (2 Gy per fraction), was delivered to the recurrent sites. The concurrent chemotherapy regimen was 50 mg/m2 irinotecan weekly and 625 mg/m2 capecitabine twice daily (Mon-Fri). Radical surgery was recommended for medically fit patients without extra-pelvic metastases. The patients were followed up every 3 months. Tumor response was evaluated using CT/MRIs according to the RECIST criteria or postoperative pathological findings. NCI-CTC 3.0 was used to score the toxicities.

Results

Forty-eight patients (67.6%) had confirmed recurrent rectal cancer without extra pelvic metastases, and 23 patients (32.4%) had extra pelvic metastases. Fourteen patients (19.7%) underwent radical resections (R0) post-chemoradiation. A pathologic complete response was observed in 7 of 14 patients. A clinical complete response was observed in 4 patients (5.6%), and a partial response was observed in 22 patients (31.0%). Only 5 patients (7.0%) showed progressive disease during or shortly after treatment. Of 53 symptomatic patients, clinical complete and partial symptom relief with chemoradiation was achieved in 56.6% and 32.1% of patients, respectively. Only 2 patients (2.8%) experienced grade 4 leukopenia. The most common grade 3 toxicity was diarrhea (16 [22.5%] patients). The median follow-up was 31 months. The cumulative local progression-free survival rate was 74.2% and 33.9% at 1 and 3 years after chemoradiation, respectively. The cumulative total survival rate was 80.1% and 36.5% at 1 and 3 years after chemoradiation, respectively.

Conclusions

This study revealed that concurrent irinotecan and capecitabine with IMRT significantly relieves local symptoms and exhibits promising efficacy with manageable toxicities in recurrent rectal cancer without prior pelvic irradiation. Improving the rate of R0 resections will be investigated in a future study.
Literature
1.
go back to reference van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575–82.CrossRefPubMed van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575–82.CrossRefPubMed
2.
go back to reference How P, Shihab O, Tekkis P, Brown G, Quirke P, Heald R, et al. A systematic review of cancer related patient outcomes after anterior resection and abdominoperineal excision for rectal cancer in the total mesorectal excision era. Surg Oncol. 2011;20:e149–55.CrossRefPubMed How P, Shihab O, Tekkis P, Brown G, Quirke P, Heald R, et al. A systematic review of cancer related patient outcomes after anterior resection and abdominoperineal excision for rectal cancer in the total mesorectal excision era. Surg Oncol. 2011;20:e149–55.CrossRefPubMed
3.
go back to reference Garcia-Aguilar J, Cromwell JW, Marra C, Lee SH, Madoff RD, Rothenberger DA. Treatment of locally recurrent rectal cancer. Dis Colon Rectum. 2001;44:1743–8.CrossRefPubMed Garcia-Aguilar J, Cromwell JW, Marra C, Lee SH, Madoff RD, Rothenberger DA. Treatment of locally recurrent rectal cancer. Dis Colon Rectum. 2001;44:1743–8.CrossRefPubMed
4.
go back to reference Camilleri-Brennan J, Steele RJ. The impact of recurrent rectal cancer on quality of life. Eur J Surg Oncol. 2001;27:349–53.CrossRefPubMed Camilleri-Brennan J, Steele RJ. The impact of recurrent rectal cancer on quality of life. Eur J Surg Oncol. 2001;27:349–53.CrossRefPubMed
5.
go back to reference Nielsen MB, Laurberg S, Holm T. Current management of locally recurrent rectal cancer. Colorectal Dis. 2011;13:732–42.CrossRefPubMed Nielsen MB, Laurberg S, Holm T. Current management of locally recurrent rectal cancer. Colorectal Dis. 2011;13:732–42.CrossRefPubMed
6.
go back to reference Bhangu A, Ali SM, Cunningham D, Brown G, Tekkis P. Comparison of long-term survival outcome of operative vs nonoperative management of recurrent rectal cancer. Colorectal Dis. 2013;15:156–63.CrossRefPubMed Bhangu A, Ali SM, Cunningham D, Brown G, Tekkis P. Comparison of long-term survival outcome of operative vs nonoperative management of recurrent rectal cancer. Colorectal Dis. 2013;15:156–63.CrossRefPubMed
7.
go back to reference Dresen RC, Gosens MJ, Martijn H, Nieuwenhuijzen GA, Creemers GJ, Daniels-Gooszen AW, et al. Radical resection after IORT-containing multimodality treatment is the most important determinant for outcome in patients treated for locally recurrent rectal cancer. Ann Surg Oncol. 2008;15:1937–47.CrossRefPubMedCentralPubMed Dresen RC, Gosens MJ, Martijn H, Nieuwenhuijzen GA, Creemers GJ, Daniels-Gooszen AW, et al. Radical resection after IORT-containing multimodality treatment is the most important determinant for outcome in patients treated for locally recurrent rectal cancer. Ann Surg Oncol. 2008;15:1937–47.CrossRefPubMedCentralPubMed
8.
go back to reference Mohiuddin M, Marks G, Marks J. Long-term results of reirradiation for patients with recurrent rectal carcinoma. Cancer. 2002;95:1144–50.CrossRefPubMed Mohiuddin M, Marks G, Marks J. Long-term results of reirradiation for patients with recurrent rectal carcinoma. Cancer. 2002;95:1144–50.CrossRefPubMed
9.
10.
11.
go back to reference Gollins SW, Myint S, Susnerwala S, Haylock B, Wise M, Topham C, et al. Preoperative downstaging chemoradiation with concurrent irinotecan and capecitabine in MRI-defined locally advanced rectal cancer: a phase I trial (NWCOG-2). Br J Cancer. 2009;101:924–34.CrossRefPubMedCentralPubMed Gollins SW, Myint S, Susnerwala S, Haylock B, Wise M, Topham C, et al. Preoperative downstaging chemoradiation with concurrent irinotecan and capecitabine in MRI-defined locally advanced rectal cancer: a phase I trial (NWCOG-2). Br J Cancer. 2009;101:924–34.CrossRefPubMedCentralPubMed
12.
go back to reference Navarro M, Dotor E, Rivera F, Sanchez-Rovira P, Vega-Villegas ME, Cervantes A, et al. A Phase II study of preoperative radiotherapy and concomitant weekly irinotecan in combination with protracted venous infusion 5-fluorouracil, for resectable locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66:201–5.CrossRefPubMed Navarro M, Dotor E, Rivera F, Sanchez-Rovira P, Vega-Villegas ME, Cervantes A, et al. A Phase II study of preoperative radiotherapy and concomitant weekly irinotecan in combination with protracted venous infusion 5-fluorouracil, for resectable locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66:201–5.CrossRefPubMed
13.
go back to reference Hong YS, Kim DY, Lim SB, Choi HS, Jeong SY, Jeong JY, et al. Preoperative chemoradiation with irinotecan and capecitabine in patients with locally advanced resectable rectal cancer: long-term results of a Phase II study. Int J Radiat Oncol Biol Phys. 2011;79:1171–8.CrossRefPubMed Hong YS, Kim DY, Lim SB, Choi HS, Jeong SY, Jeong JY, et al. Preoperative chemoradiation with irinotecan and capecitabine in patients with locally advanced resectable rectal cancer: long-term results of a Phase II study. Int J Radiat Oncol Biol Phys. 2011;79:1171–8.CrossRefPubMed
14.
go back to reference Hofheinz RD, von Gerstenberg-Helldorf B, Wenz F, Gnad U, Kraus-Tiefenbacher U, Muldner A, et al. Phase I trial of capecitabine and weekly irinotecan in combination with radiotherapy for neoadjuvant therapy of rectal cancer. J Clin Oncol. 2005;23:1350–7.CrossRefPubMed Hofheinz RD, von Gerstenberg-Helldorf B, Wenz F, Gnad U, Kraus-Tiefenbacher U, Muldner A, et al. Phase I trial of capecitabine and weekly irinotecan in combination with radiotherapy for neoadjuvant therapy of rectal cancer. J Clin Oncol. 2005;23:1350–7.CrossRefPubMed
15.
go back to reference Wong SJ, Winter K, Meropol NJ, Anne PR, Kachnic L, Rashid A, et al. Radiation Therapy Oncology Group 0247: a randomized Phase II study of neoadjuvant capecitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82:1367–75.CrossRefPubMedCentralPubMed Wong SJ, Winter K, Meropol NJ, Anne PR, Kachnic L, Rashid A, et al. Radiation Therapy Oncology Group 0247: a randomized Phase II study of neoadjuvant capecitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82:1367–75.CrossRefPubMedCentralPubMed
16.
go back to reference Hodapp N. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol. 2012;188:97–9.CrossRefPubMed Hodapp N. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol. 2012;188:97–9.CrossRefPubMed
17.
go back to reference Myerson RJ, Garofalo MC, El Naqa I, Abrams RA, Apte A, Bosch WR, et al. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74:824–30.CrossRefPubMedCentralPubMed Myerson RJ, Garofalo MC, El Naqa I, Abrams RA, Apte A, Bosch WR, et al. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74:824–30.CrossRefPubMedCentralPubMed
18.
go back to reference Bhangu A, Ali SM, Darzi A, Brown G, Tekkis P. Meta-analysis of survival based on resection margin status following surgery for recurrent rectal cancer. Colorectal Dis. 2012;14:1457–66.CrossRefPubMed Bhangu A, Ali SM, Darzi A, Brown G, Tekkis P. Meta-analysis of survival based on resection margin status following surgery for recurrent rectal cancer. Colorectal Dis. 2012;14:1457–66.CrossRefPubMed
19.
go back to reference van den Brink M, Stiggelbout AM, van den Hout WB, Kievit J, Klein Kranenbarg E, Marijnen CA, et al. Clinical nature and prognosis of locally recurrent rectal cancer after total mesorectal excision with or without preoperative radiotherapy. J Clin Oncol. 2004;22:3958–64.CrossRefPubMed van den Brink M, Stiggelbout AM, van den Hout WB, Kievit J, Klein Kranenbarg E, Marijnen CA, et al. Clinical nature and prognosis of locally recurrent rectal cancer after total mesorectal excision with or without preoperative radiotherapy. J Clin Oncol. 2004;22:3958–64.CrossRefPubMed
20.
go back to reference Guerrero Urbano MT, Henrys AJ, Adams EJ, Norman AR, Bedford JL, Harrington KJ, et al. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys. 2006;65:907–16.CrossRefPubMed Guerrero Urbano MT, Henrys AJ, Adams EJ, Norman AR, Bedford JL, Harrington KJ, et al. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys. 2006;65:907–16.CrossRefPubMed
21.
go back to reference Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82:1981–7.CrossRefPubMed Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82:1981–7.CrossRefPubMed
22.
go back to reference Hu JB, Sun XN, Yang QC, Xu J, Wang Q, He C. Three-dimensional conformal radiotherapy combined with FOLFOX4 chemotherapy for unresectable recurrent rectal cancer. World J Gastroenterol. 2006;12:2610–4.PubMedCentralPubMed Hu JB, Sun XN, Yang QC, Xu J, Wang Q, He C. Three-dimensional conformal radiotherapy combined with FOLFOX4 chemotherapy for unresectable recurrent rectal cancer. World J Gastroenterol. 2006;12:2610–4.PubMedCentralPubMed
23.
go back to reference You YT, Chen JS, Wang JY, Tang R, Changchien CR, Chiang JM, et al. Concurrent chemoradiotherapy in the treatment of locally recurrent rectal cancer. Hepatogastroenterology. 2013;60:94–8.PubMed You YT, Chen JS, Wang JY, Tang R, Changchien CR, Chiang JM, et al. Concurrent chemoradiotherapy in the treatment of locally recurrent rectal cancer. Hepatogastroenterology. 2013;60:94–8.PubMed
24.
go back to reference Willeke F, Horisberger K, Kraus-Tiefenbacher U, Wenz F, Leitner A, Hochhaus A, et al. A phase II study of capecitabine and irinotecan in combination with concurrent pelvic radiotherapy (CapIri-RT) as neoadjuvant treatment of locally advanced rectal cancer. Br J Cancer. 2007;96:912–7.CrossRefPubMedCentralPubMed Willeke F, Horisberger K, Kraus-Tiefenbacher U, Wenz F, Leitner A, Hochhaus A, et al. A phase II study of capecitabine and irinotecan in combination with concurrent pelvic radiotherapy (CapIri-RT) as neoadjuvant treatment of locally advanced rectal cancer. Br J Cancer. 2007;96:912–7.CrossRefPubMedCentralPubMed
25.
go back to reference Mohiuddin M, Winter K, Mitchell E, Hanna N, Yuen A, Nichols C, et al. Randomized phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J Clin Oncol. 2006;24:650–5.CrossRefPubMed Mohiuddin M, Winter K, Mitchell E, Hanna N, Yuen A, Nichols C, et al. Randomized phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J Clin Oncol. 2006;24:650–5.CrossRefPubMed
26.
go back to reference Wahba HA, El-Hadaad HA, Roshdy S. Combination of irinotecan and 5-fluorouracil with radiation in locally advanced rectal adenocarcinoma. J Gastrointest Cancer. 2012;43:467–71.CrossRefPubMed Wahba HA, El-Hadaad HA, Roshdy S. Combination of irinotecan and 5-fluorouracil with radiation in locally advanced rectal adenocarcinoma. J Gastrointest Cancer. 2012;43:467–71.CrossRefPubMed
27.
go back to reference Willett CG, Gunderson LL. Palliative treatment of rectal cancer: is radiotherapy alone a good option? J Gastrointest Surg. 2004;8:277–9.CrossRefPubMed Willett CG, Gunderson LL. Palliative treatment of rectal cancer: is radiotherapy alone a good option? J Gastrointest Surg. 2004;8:277–9.CrossRefPubMed
28.
go back to reference Palmer G, Martling A, Cedermark B, Holm T. A population-based study on the management and outcome in patients with locally recurrent rectal cancer. Ann Surg Oncol. 2007;14:447–54.CrossRefPubMed Palmer G, Martling A, Cedermark B, Holm T. A population-based study on the management and outcome in patients with locally recurrent rectal cancer. Ann Surg Oncol. 2007;14:447–54.CrossRefPubMed
29.
go back to reference Bakx R, Visser O, Josso J, Meijer S, Slors JF, van Lanschot JJ. Management of recurrent rectal cancer: a population based study in greater Amsterdam. World J Gastroenterol. 2008;14:6018–23.CrossRefPubMedCentralPubMed Bakx R, Visser O, Josso J, Meijer S, Slors JF, van Lanschot JJ. Management of recurrent rectal cancer: a population based study in greater Amsterdam. World J Gastroenterol. 2008;14:6018–23.CrossRefPubMedCentralPubMed
30.
go back to reference Habr-Gama A, Perez RO. Non-operative management of rectal cancer after neoadjuvant chemoradiation. Br J Surg. 2009;96:125–7.CrossRefPubMed Habr-Gama A, Perez RO. Non-operative management of rectal cancer after neoadjuvant chemoradiation. Br J Surg. 2009;96:125–7.CrossRefPubMed
31.
go back to reference Voelter V, Zouhair A, Vuilleumier H, Matter M, Bouzourene H, Leyvraz S, et al. CPT-11 and concomitant hyperfractionated accelerated radiotherapy induce efficient local control in rectal cancer patients: results from a phase II. Br J Cancer. 2006;95:710–6.CrossRefPubMedCentralPubMed Voelter V, Zouhair A, Vuilleumier H, Matter M, Bouzourene H, Leyvraz S, et al. CPT-11 and concomitant hyperfractionated accelerated radiotherapy induce efficient local control in rectal cancer patients: results from a phase II. Br J Cancer. 2006;95:710–6.CrossRefPubMedCentralPubMed
32.
go back to reference Mehta VK, Cho C, Ford JM, Jambalos C, Poen J, Koong A, et al. Phase II trial of preoperative 3D conformal radiotherapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int J Radiat Oncol Biol Phys. 2003;55:132–7.CrossRefPubMed Mehta VK, Cho C, Ford JM, Jambalos C, Poen J, Koong A, et al. Phase II trial of preoperative 3D conformal radiotherapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int J Radiat Oncol Biol Phys. 2003;55:132–7.CrossRefPubMed
Metadata
Title
CAPIRI-IMRT: a phase II study of concurrent capecitabine and irinotecan with intensity-modulated radiation therapy for the treatment of recurrent rectal cancer
Authors
Gang Cai
Ji Zhu
Joshua D Palmer
Ye Xu
Weigang Hu
Weilie Gu
Sanjun Cai
Zhen Zhang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0360-5

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue