Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Rules of parotid gland dose variations and shift during intensity modulated radiation therapy for nasopharyngeal carcinoma

Authors: Wei Wang, Haihua Yang, Yucheng Mi, Wei Hu, Weijun Ding, Youyou Xie, Yujie Cai, Xiaofeng Chen

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

To determine the position and dose delivery changes rules of parotid gland (PG) during the course of intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma patients (NPC).

Materials and methods

One hundred and forty one competed tomography (CT) images from 47 NPC patients (three images for each patient were acquired before treatment, at the 15th and 25th fraction during the treatment) who underwent radical IMRT were selected for this study. A total of 70-76Gy at 2.12–2.3 Gy/fraction/d was given to the GTVnx in 33 fractions. The distances between the lateral/medial aspects of PG and midline (DLM and DMM) at the level of odontoid process were measured. The dose differences between plan and actual delivery were calculated.

Results

The volume reductions of PGs between fractions 15 and 25 were larger than those in the first 15 fractions (4.68 ± 3.23 cc vs. 2.46 ± 4.55 cc for the right PG and 5.96 ± 2.99 cc vs. 2.06 ± 2.99 cc for the left PG). However, the percentage of gland volume receiving ≥30 Gy (V30) of bilateral PGs decreased more significantly in the first 15 fractions than that between fractions 15 and 25 (5.61 ± 16.04% vs. 1.14 ± 21.54% for the right PG and 6.87 ± 15.58% vs. 0.81 ± 15.94% for the left PG). The gross tumor volume of the nasopharynx (GTVnx) decreased more significantly in the first 15 fractions than that between the 15th and 25th fraction (8.23 ± 13.61 cc vs. 3.30 ± 8.09 cc). The DMM of ipsilateral PGs reduced in the first 15 fractions (0.80 ± 2.96 mm) but increased between fraction 15 and 25 (−2.19 ± 3.96 mm). While ipsilateral PG shifted into target volume but shifted out target volume between fraction 15 and 25. Parotid glands V30 was correlated with GTVnx, GTVnx reduction and DMM reduction (p < 0.01).

Conclusion

Our results indicate that the reduction of GTVnx leads to the positional change of the parotid gland, which results in more significant dose change of the parotid gland in the first 15 fractions than that between fraction 15 and 25.
Literature
1.
go back to reference Sriuranpong V, Mutirangura A, Gillespie JW, Patel V, Amornphimoltham P, Molinolo AA, et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin Cancer Res. 2004;10(15):4944–58.PubMedCrossRef Sriuranpong V, Mutirangura A, Gillespie JW, Patel V, Amornphimoltham P, Molinolo AA, et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin Cancer Res. 2004;10(15):4944–58.PubMedCrossRef
2.
go back to reference Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol. 1998;16(4):1310–7.PubMed Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol. 1998;16(4):1310–7.PubMed
3.
go back to reference Lee N, Harris J, Garden AS, Straube W, Glisson B, Xia P, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009;27(22):3684–90.PubMedCentralPubMedCrossRef Lee N, Harris J, Garden AS, Straube W, Glisson B, Xia P, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009;27(22):3684–90.PubMedCentralPubMedCrossRef
4.
go back to reference Nishi T, Nishimura Y, Shibata T, Tamura M, Nishigaito N, Okumura M. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106(1):85–9.PubMedCrossRef Nishi T, Nishimura Y, Shibata T, Tamura M, Nishigaito N, Okumura M. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106(1):85–9.PubMedCrossRef
5.
go back to reference Berwouts D, Olteanu LA, Duprez F, Vercauteren T, De Gersem W, De Neve W, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol. 2013;107(3):310–6.PubMedCrossRef Berwouts D, Olteanu LA, Duprez F, Vercauteren T, De Gersem W, De Neve W, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol. 2013;107(3):310–6.PubMedCrossRef
6.
go back to reference Bhide SA, Davies M, Burke K, McNair HA, Hansen V, Barbachano Y, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360–8.PubMedCrossRef Bhide SA, Davies M, Burke K, McNair HA, Hansen V, Barbachano Y, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360–8.PubMedCrossRef
7.
go back to reference Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89(1):81–8.PubMedCrossRef Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89(1):81–8.PubMedCrossRef
8.
go back to reference Hansen EK, Bucci MK, Quivey JM, Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355–62.PubMedCrossRef Hansen EK, Bucci MK, Quivey JM, Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355–62.PubMedCrossRef
9.
go back to reference Barker JJ, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.PubMedCrossRef Barker JJ, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.PubMedCrossRef
10.
go back to reference Yang H, Hu W, Ding W, Shan G, Wang W, Yu C, et al. Changes of the transverse diameter and volume and dosimetry before the 25th fraction during the course of intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal carcinoma. Med Dosim. 2012;37(2):225–9.PubMedCrossRef Yang H, Hu W, Ding W, Shan G, Wang W, Yu C, et al. Changes of the transverse diameter and volume and dosimetry before the 25th fraction during the course of intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal carcinoma. Med Dosim. 2012;37(2):225–9.PubMedCrossRef
11.
go back to reference Wang W, Yang H, Hu W, Shan G, Ding W, Yu C, et al. Clinical study of the necessity of replanning before the 25th fraction during the course of intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2010;77(2):617–21.PubMedCrossRef Wang W, Yang H, Hu W, Shan G, Ding W, Yu C, et al. Clinical study of the necessity of replanning before the 25th fraction during the course of intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2010;77(2):617–21.PubMedCrossRef
12.
go back to reference Yang H, Tu Y, Wang W, Hu W, Ding W, Yu C, et al. A comparison of anatomical and dosimetric variations in the first 15 fractions, and between fractions 16 and 25, of intensity-modulated radiotherapy for nasopharyngeal carcinoma. J Appl Clin Med Phys. 2013;14(6):3918.PubMed Yang H, Tu Y, Wang W, Hu W, Ding W, Yu C, et al. A comparison of anatomical and dosimetric variations in the first 15 fractions, and between fractions 16 and 25, of intensity-modulated radiotherapy for nasopharyngeal carcinoma. J Appl Clin Med Phys. 2013;14(6):3918.PubMed
13.
go back to reference Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127–36.PubMedCentralPubMedCrossRef Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127–36.PubMedCentralPubMedCrossRef
14.
go back to reference Kam MK, Leung SF, Zee B, Chau RM, Suen JJ, Mo F, et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol. 2007;25(31):4873–9.PubMedCrossRef Kam MK, Leung SF, Zee B, Chau RM, Suen JJ, Mo F, et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol. 2007;25(31):4873–9.PubMedCrossRef
15.
go back to reference Ho KF, Marchant T, Moore C, Webster G, Rowbottom C, Penington H, et al. Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy. Int J Radiat Oncol Biol Phys. 2012;82(3):e375–82.PubMedCrossRef Ho KF, Marchant T, Moore C, Webster G, Rowbottom C, Penington H, et al. Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy. Int J Radiat Oncol Biol Phys. 2012;82(3):e375–82.PubMedCrossRef
16.
go back to reference van de Water TA, Bijl HP, Westerlaan HE, Langendijk JA. Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia. Radiother Oncol. 2009;93(3):545–52.PubMedCrossRef van de Water TA, Bijl HP, Westerlaan HE, Langendijk JA. Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia. Radiother Oncol. 2009;93(3):545–52.PubMedCrossRef
17.
go back to reference Yang H, Hu W, Wang W, Chen P, Ding W, Luo W. Replanning during intensity modulated radiation therapy improved quality of life in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2013;85:e47–54.PubMedCrossRef Yang H, Hu W, Wang W, Chen P, Ding W, Luo W. Replanning during intensity modulated radiation therapy improved quality of life in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2013;85:e47–54.PubMedCrossRef
18.
go back to reference Zhao L, Wan Q, Zhou Y, Deng X, Xie C, Wu S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol. 2011;98(1):23–7.PubMedCrossRef Zhao L, Wan Q, Zhou Y, Deng X, Xie C, Wu S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol. 2011;98(1):23–7.PubMedCrossRef
Metadata
Title
Rules of parotid gland dose variations and shift during intensity modulated radiation therapy for nasopharyngeal carcinoma
Authors
Wei Wang
Haihua Yang
Yucheng Mi
Wei Hu
Weijun Ding
Youyou Xie
Yujie Cai
Xiaofeng Chen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-014-0307-2

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue