Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2017

Open Access 01-12-2017 | Research

Is vertebral rotation correction maintained after thoracoscopic anterior scoliosis surgery? A low-dose computed tomography study

Authors: Luke A. Reynolds, Maree T. Izatt, Eric M. Huang, Robert D. Labrom, Geoffrey N. Askin, Clayton J. Adam, Mark J. Pearcy

Published in: Scoliosis and Spinal Disorders | Issue 1/2017

Login to get access

Abstract

Background

Axial vertebral rotation is a key characteristic of adolescent idiopathic scoliosis (AIS), and its reduction is one of the goals of corrective surgery. Recurrence of deformity after surgical correction may relate to rotation changes that occur in the anterior vertebral column after surgery, but whether any change occurs within the fused segment or in adjacent unfused levels following thoracoscopic anterior spinal fusion (TASF) is unknown. An analysis of measurements from an existing postoperative CT dataset was performed to investigate the occurrence of inter- and intra-vertebral rotation changes after TASF within and adjacent to the fused spinal segment and look for any relationships with the Cobb angle and rib hump in the two years after surgery.

Methods

39 Lenke Type 1 main thoracic patients underwent TASF for progressive AIS and low dose computed tomography scanning of the instrumented levels of the spine at 6 and 24 months after surgery. Vertebral rotation was measured at the superior and inferior endplates on true axial images for all vertebral levels in the fused segment plus one adjacent level cranially and caudally. Intra-observer variability for rotation measurements was assessed using 95% limits of agreement to detect significant changes in inter/intra-vertebral rotation.

Results

Significant local changes in inter- and intra-vertebral rotation were found to have occurred between 6 and 24 months after anterior surgical fusion within the fused spinal segment, albeit with no consistent pattern of location or direction within the instrumented fusion construct. No significant en-bloc movement of the entire fused spinal segment relative to the adjacent un-instrumented cranial and caudal intervertebral levels was found. No clear correlation was found between any vertebral rotation changes and Cobb angle or rib hump measures.

Conclusions

Localised inter- and intra-vertebral rotation occurs between 6 and 24 months after TASF, both within the instrumented spinal segments and in the adjacent un-instrumented levels of the adolescent spine. The lack of measurable en-bloc movement of the fused segment relative to the adjacent un-instrumented levels suggests that overall stability of the instrumented construct is achieved, however the vertebrae within the fusion mass continue to adapt and remodel, resulting in ongoing local anatomical and biomechanical changes in the adolescent spine.
Literature
1.
go back to reference Aaro S, Dahlborn M. The longitudinal axis rotation of the apical vertebra, the vertebral, spinal, and rib cage deformity in idiopathic scoliosis studied by computer tomography. Spine (Phila Pa 1976). 1981;6(6):567–72.CrossRef Aaro S, Dahlborn M. The longitudinal axis rotation of the apical vertebra, the vertebral, spinal, and rib cage deformity in idiopathic scoliosis studied by computer tomography. Spine (Phila Pa 1976). 1981;6(6):567–72.CrossRef
2.
go back to reference Aaro S, Dahlborn M. Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer tomography. Spine. 1981;6(5):460–7.CrossRefPubMed Aaro S, Dahlborn M. Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer tomography. Spine. 1981;6(5):460–7.CrossRefPubMed
3.
go back to reference Birchall D, Hughes D, Gregson B, Williamson B. Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J. 2005;14(2):123–9.CrossRefPubMed Birchall D, Hughes D, Gregson B, Williamson B. Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J. 2005;14(2):123–9.CrossRefPubMed
4.
go back to reference Adam CJ, Askin GN, Pearcy MJ. Gravity-induced torque and intravertebral rotation in idiopathic scoliosis. Spine. 2008;33(2):E30–7.CrossRefPubMed Adam CJ, Askin GN, Pearcy MJ. Gravity-induced torque and intravertebral rotation in idiopathic scoliosis. Spine. 2008;33(2):E30–7.CrossRefPubMed
5.
go back to reference Pankowski R, Walejko S, Roclawski M, Ceynowa M, Mazurek T. Intraoperative computed tomography versus Perdriolle and scoliometer evaluation of spine rotation in adolescent idiopathic scoliosis. Biomed Res Int. 2015;2015:460340.CrossRefPubMedPubMedCentral Pankowski R, Walejko S, Roclawski M, Ceynowa M, Mazurek T. Intraoperative computed tomography versus Perdriolle and scoliometer evaluation of spine rotation in adolescent idiopathic scoliosis. Biomed Res Int. 2015;2015:460340.CrossRefPubMedPubMedCentral
6.
go back to reference Seoud L, Cheriet F, Labelle H, Parent S. Changes in trunk appearance after scoliosis spinal surgery and their relation to changes in spinal measurements. Spine Deform. 2015;3(6):595–603.CrossRefPubMed Seoud L, Cheriet F, Labelle H, Parent S. Changes in trunk appearance after scoliosis spinal surgery and their relation to changes in spinal measurements. Spine Deform. 2015;3(6):595–603.CrossRefPubMed
7.
go back to reference Tang X, Zhao J, Zhang Y. Radiographic, clinical, and patients’ assessment of segmental direct vertebral body derotation versus simple rod derotation in main thoracic adolescent idiopathic scoliosis: a prospective, comparative cohort study. Eur Spine J. 2015;24(2):298–305.CrossRefPubMed Tang X, Zhao J, Zhang Y. Radiographic, clinical, and patients’ assessment of segmental direct vertebral body derotation versus simple rod derotation in main thoracic adolescent idiopathic scoliosis: a prospective, comparative cohort study. Eur Spine J. 2015;24(2):298–305.CrossRefPubMed
8.
go back to reference Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W. Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2016;41(10):864–71.CrossRef Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W. Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2016;41(10):864–71.CrossRef
9.
go back to reference McAfee PC, Regan JR, Zdeblick T, Zuckerman J, Picetti 3rd GD, Heim S, et al. The incidence of complications in endoscopic anterior thoracolumbar spinal reconstructive surgery. A prospective multicenter study comprising the first 100 consecutive cases. Spine. 1995;20(14):1624–32.CrossRefPubMed McAfee PC, Regan JR, Zdeblick T, Zuckerman J, Picetti 3rd GD, Heim S, et al. The incidence of complications in endoscopic anterior thoracolumbar spinal reconstructive surgery. A prospective multicenter study comprising the first 100 consecutive cases. Spine. 1995;20(14):1624–32.CrossRefPubMed
10.
go back to reference Al-Sayyad MJ, Crawford AH, Wolf RK. Early experiences with video-assisted thoracoscopic surgery: our first 70 cases. Spine. 2004;29(17):1945–51. discussion 52.CrossRefPubMed Al-Sayyad MJ, Crawford AH, Wolf RK. Early experiences with video-assisted thoracoscopic surgery: our first 70 cases. Spine. 2004;29(17):1945–51. discussion 52.CrossRefPubMed
11.
go back to reference Picetti 3rd GD, Ertl JP, Bueff HU. Endoscopic instrumentation, correction, and fusion of idiopathic scoliosis. Spine J. 2001;1(3):190–7.CrossRefPubMed Picetti 3rd GD, Ertl JP, Bueff HU. Endoscopic instrumentation, correction, and fusion of idiopathic scoliosis. Spine J. 2001;1(3):190–7.CrossRefPubMed
12.
go back to reference Picetti 3rd GD, Pang D, Bueff HU. Thoracoscopic techniques for the treatment of scoliosis: early results in procedure development. Neurosurgery. 2002;51(4):978–84. discussion 84.PubMed Picetti 3rd GD, Pang D, Bueff HU. Thoracoscopic techniques for the treatment of scoliosis: early results in procedure development. Neurosurgery. 2002;51(4):978–84. discussion 84.PubMed
13.
go back to reference Newton PO, Marks M, Faro F, Betz R, Clements D, Haher T, et al. Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine. 2003;28(20):S249–54.CrossRefPubMed Newton PO, Marks M, Faro F, Betz R, Clements D, Haher T, et al. Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine. 2003;28(20):S249–54.CrossRefPubMed
14.
go back to reference Faro FD, Marks MC, Newton PO, Blanke K, Lenke LG. Perioperative changes in pulmonary function after anterior scoliosis instrumentation: thoracoscopic versus open approaches. Spine. 2005;30(9):1058–63.CrossRefPubMed Faro FD, Marks MC, Newton PO, Blanke K, Lenke LG. Perioperative changes in pulmonary function after anterior scoliosis instrumentation: thoracoscopic versus open approaches. Spine. 2005;30(9):1058–63.CrossRefPubMed
15.
go back to reference Wong HK, Hee HT, Yu Z, Wong D. Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine (Phila Pa 1976). 2004;29(18):2031–8. discussion 9.CrossRef Wong HK, Hee HT, Yu Z, Wong D. Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine (Phila Pa 1976). 2004;29(18):2031–8. discussion 9.CrossRef
16.
go back to reference Izatt MT, Harvey JR, Adam CJ, Fender D, Labrom RD, Askin GN. Recovery of pulmonary function following endoscopic anterior scoliosis correction: evaluation at 3, 6, 12, and 24 months after surgery. Spine. 2006;31(21):2469–77.CrossRefPubMed Izatt MT, Harvey JR, Adam CJ, Fender D, Labrom RD, Askin GN. Recovery of pulmonary function following endoscopic anterior scoliosis correction: evaluation at 3, 6, 12, and 24 months after surgery. Spine. 2006;31(21):2469–77.CrossRefPubMed
17.
go back to reference Gatehouse SC, Izatt MT, Adam CJ, Harvey JR, Labrom RD, Askin GN. Perioperative aspects of endoscopic anterior scoliosis surgery: the learning curve for a consecutive series of 100 patients. J Spinal Disord Tech. 2007;20(4):317–23.CrossRefPubMed Gatehouse SC, Izatt MT, Adam CJ, Harvey JR, Labrom RD, Askin GN. Perioperative aspects of endoscopic anterior scoliosis surgery: the learning curve for a consecutive series of 100 patients. J Spinal Disord Tech. 2007;20(4):317–23.CrossRefPubMed
18.
go back to reference Hay D, Izatt MT, Adam CJ, Labrom RD, Askin GN. Radiographic outcomes over time after endoscopic anterior scoliosis correction: a prospective series of 106 patients. Spine. 2009;34(11):1176–84.CrossRefPubMed Hay D, Izatt MT, Adam CJ, Labrom RD, Askin GN. Radiographic outcomes over time after endoscopic anterior scoliosis correction: a prospective series of 106 patients. Spine. 2009;34(11):1176–84.CrossRefPubMed
19.
go back to reference Izatt MT, Adam CJ, Verzin EJ, Labrom RD, Askin GN. CT and radiographic analysis of sagittal profile changes following thoracoscopic anterior scoliosis surgery. Scoliosis. 2012;7(1):15.CrossRefPubMedPubMedCentral Izatt MT, Adam CJ, Verzin EJ, Labrom RD, Askin GN. CT and radiographic analysis of sagittal profile changes following thoracoscopic anterior scoliosis surgery. Scoliosis. 2012;7(1):15.CrossRefPubMedPubMedCentral
20.
go back to reference Morris SA, Izatt MT, Adam CJ, Labrom RD, Askin GN. Postoperative pain relief using intermittent intrapleural analgesia following thoracoscopic anterior correction for progressive adolescent idiopathic scoliosis. Scoliosis. 2013;8(1):18.CrossRefPubMedPubMedCentral Morris SA, Izatt MT, Adam CJ, Labrom RD, Askin GN. Postoperative pain relief using intermittent intrapleural analgesia following thoracoscopic anterior correction for progressive adolescent idiopathic scoliosis. Scoliosis. 2013;8(1):18.CrossRefPubMedPubMedCentral
21.
go back to reference Newton PO, Parent S, Marks M, Pawelek J. Prospective evaluation of 50 consecutive scoliosis patients surgically treated with thoracoscopic anterior instrumentation. Spine. 2005;30(17 Suppl):S100–9.CrossRefPubMed Newton PO, Parent S, Marks M, Pawelek J. Prospective evaluation of 50 consecutive scoliosis patients surgically treated with thoracoscopic anterior instrumentation. Spine. 2005;30(17 Suppl):S100–9.CrossRefPubMed
22.
go back to reference Newton PO, Upasani VV, Lhamby J, Ugrinow VL, Pawelek JB, Bastrom TP. Surgical treatment of main thoracic scoliosis with thoracoscopic anterior instrumentation. a 5-year follow-up study. J Bone Joint Surg Am. 2008;90(10):2077–89.CrossRefPubMed Newton PO, Upasani VV, Lhamby J, Ugrinow VL, Pawelek JB, Bastrom TP. Surgical treatment of main thoracic scoliosis with thoracoscopic anterior instrumentation. a 5-year follow-up study. J Bone Joint Surg Am. 2008;90(10):2077–89.CrossRefPubMed
23.
go back to reference Izatt MT, Adam CJ, Labrom RD, Askin GN. The relationship between deformity correction and clinical outcomes after thoracoscopic scoliosis surgery: a prospective series of one hundred patients. Spine (Phila Pa 1976). 2010;35(26):E1577–85.CrossRef Izatt MT, Adam CJ, Labrom RD, Askin GN. The relationship between deformity correction and clinical outcomes after thoracoscopic scoliosis surgery: a prospective series of one hundred patients. Spine (Phila Pa 1976). 2010;35(26):E1577–85.CrossRef
24.
go back to reference Izatt MT, Carstens A, Adam CJ, Labrom RD, Askin GN. Partial intervertebral fusion secures successful outcomes after thoracoscopic anterior scoliosis correction: a low-dose computed tomography study. Spine Deformity. 2015;3:515–27.CrossRefPubMed Izatt MT, Carstens A, Adam CJ, Labrom RD, Askin GN. Partial intervertebral fusion secures successful outcomes after thoracoscopic anterior scoliosis correction: a low-dose computed tomography study. Spine Deformity. 2015;3:515–27.CrossRefPubMed
25.
go back to reference Pratt RK, Webb JK, Burwell RG, Cole AA. Changes in surface and radiographic deformity after Universal Spine System for right thoracic adolescent idiopathic scoliosis: is rib-hump reassertion a mechanical problem of the thoracic cage rather than an effect of relative anterior spinal overgrowth? Spine (Phila Pa 1976). 2001;26(16):1778–87.CrossRef Pratt RK, Webb JK, Burwell RG, Cole AA. Changes in surface and radiographic deformity after Universal Spine System for right thoracic adolescent idiopathic scoliosis: is rib-hump reassertion a mechanical problem of the thoracic cage rather than an effect of relative anterior spinal overgrowth? Spine (Phila Pa 1976). 2001;26(16):1778–87.CrossRef
26.
go back to reference Cui G, Watanabe K, Nishiwaki Y, Hosogane N, Tsuji T, Ishii K, et al. Loss of apical vertebral derotation in adolescent idiopathic scoliosis: 2-year follow-up using multi-planar reconstruction computed tomography. Eur Spine J. 2012;21(6):1111–20.CrossRefPubMedPubMedCentral Cui G, Watanabe K, Nishiwaki Y, Hosogane N, Tsuji T, Ishii K, et al. Loss of apical vertebral derotation in adolescent idiopathic scoliosis: 2-year follow-up using multi-planar reconstruction computed tomography. Eur Spine J. 2012;21(6):1111–20.CrossRefPubMedPubMedCentral
27.
go back to reference Samdani AF, Asghar J, Miyanji F, Bennett JT, Hoashi JS, Lonner BS, et al. Recurrence of rib prominence following surgery for adolescent idiopathic scoliosis with pedicle screws and direct vertebral body derotation. Eur Spine J. 2015;24(7):1547–54.CrossRefPubMed Samdani AF, Asghar J, Miyanji F, Bennett JT, Hoashi JS, Lonner BS, et al. Recurrence of rib prominence following surgery for adolescent idiopathic scoliosis with pedicle screws and direct vertebral body derotation. Eur Spine J. 2015;24(7):1547–54.CrossRefPubMed
28.
go back to reference Bunnell WP. An objective criterion for scoliosis screening. J Bone Joint Surg Am. 1984;66(9):1381–7.CrossRefPubMed Bunnell WP. An objective criterion for scoliosis screening. J Bone Joint Surg Am. 1984;66(9):1381–7.CrossRefPubMed
29.
go back to reference Murrell GA, Coonrad RW, Moorman 3rd CT, Fitch RD. An assessment of the reliability of the Scoliometer. Spine (Phila Pa 1976). 1993;18(6):709–12.CrossRef Murrell GA, Coonrad RW, Moorman 3rd CT, Fitch RD. An assessment of the reliability of the Scoliometer. Spine (Phila Pa 1976). 1993;18(6):709–12.CrossRef
30.
go back to reference Grivas TB, Vasiliadis ES, Koufopoulos G, Segos D, Triantafyllopoulos G, Mouzakis V. Study of trunk asymmetry in normal children and adolescents. Scoliosis. 2006;1:19.CrossRefPubMedPubMedCentral Grivas TB, Vasiliadis ES, Koufopoulos G, Segos D, Triantafyllopoulos G, Mouzakis V. Study of trunk asymmetry in normal children and adolescents. Scoliosis. 2006;1:19.CrossRefPubMedPubMedCentral
31.
go back to reference Izatt MT, Bateman GR, Adam CJ. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012;7(1):14.CrossRefPubMedPubMedCentral Izatt MT, Bateman GR, Adam CJ. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012;7(1):14.CrossRefPubMedPubMedCentral
32.
go back to reference Adam CJ, Izatt MT, Harvey JR, Askin GN. Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine (Phila Pa 1976). 2005;30(14):1664–9.CrossRef Adam CJ, Izatt MT, Harvey JR, Askin GN. Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine (Phila Pa 1976). 2005;30(14):1664–9.CrossRef
33.
go back to reference Keenan BE, Izatt MT, Askin GN, Labrom RD, Pearcy MJ, Adam CJ. Supine to standing Cobb angle change in idiopathic scoliosis: the effect of endplate pre-selection. Scoliosis. 2014;9:16.CrossRefPubMedPubMedCentral Keenan BE, Izatt MT, Askin GN, Labrom RD, Pearcy MJ, Adam CJ. Supine to standing Cobb angle change in idiopathic scoliosis: the effect of endplate pre-selection. Scoliosis. 2014;9:16.CrossRefPubMedPubMedCentral
34.
go back to reference Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging Cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine (Phila Pa 1976). 2013;38(11):E656–61.CrossRef Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging Cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine (Phila Pa 1976). 2013;38(11):E656–61.CrossRef
35.
go back to reference Torell G, Nachemson A, Haderspeck-Grib K, Schultz A. Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine. 1985;10(5):425–7.CrossRefPubMed Torell G, Nachemson A, Haderspeck-Grib K, Schultz A. Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine. 1985;10(5):425–7.CrossRefPubMed
36.
go back to reference Adam CJ, Askin GN. Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(3):E80–3.CrossRef Adam CJ, Askin GN. Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(3):E80–3.CrossRef
37.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed
38.
go back to reference Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):85–93.CrossRefPubMed Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):85–93.CrossRefPubMed
39.
go back to reference Xiong B, Sevastik B, Willers U, Sevastik J, Hedlund R. Structural vertebral changes in the horizontal plane in idiopathic scoliosis and the long-term corrective effect of spine instrumentation. Eur Spine J. 1995;4(1):11–4.CrossRefPubMed Xiong B, Sevastik B, Willers U, Sevastik J, Hedlund R. Structural vertebral changes in the horizontal plane in idiopathic scoliosis and the long-term corrective effect of spine instrumentation. Eur Spine J. 1995;4(1):11–4.CrossRefPubMed
40.
go back to reference Cundy PJ, Paterson DC, Hillier TM, Sutherland AD, Stephen JP, Foster BK. Cotrel-Dubousset instrumentation and vertebral rotation in adolescent idiopathic scoliosis. J Bone Joint Surg Br. 1990;72(4):670–4.PubMed Cundy PJ, Paterson DC, Hillier TM, Sutherland AD, Stephen JP, Foster BK. Cotrel-Dubousset instrumentation and vertebral rotation in adolescent idiopathic scoliosis. J Bone Joint Surg Br. 1990;72(4):670–4.PubMed
41.
go back to reference Willers U, Hedlund R, Aaro S. Mid-term effects of Cotrel-Dubousset instrumentation on the configuration of the spine and the thoracic cage in thoracic idiopathic scoliosis. Eur Spine J. 1993;2(2):99–103.CrossRefPubMed Willers U, Hedlund R, Aaro S. Mid-term effects of Cotrel-Dubousset instrumentation on the configuration of the spine and the thoracic cage in thoracic idiopathic scoliosis. Eur Spine J. 1993;2(2):99–103.CrossRefPubMed
42.
go back to reference Wever DJ, Veldhuizen AG, Klein JP, Webb PJ, Nijenbanning G, Cool JC, et al. A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur Spine J. 1999;8(4):252–60.CrossRefPubMedPubMedCentral Wever DJ, Veldhuizen AG, Klein JP, Webb PJ, Nijenbanning G, Cool JC, et al. A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur Spine J. 1999;8(4):252–60.CrossRefPubMedPubMedCentral
Metadata
Title
Is vertebral rotation correction maintained after thoracoscopic anterior scoliosis surgery? A low-dose computed tomography study
Authors
Luke A. Reynolds
Maree T. Izatt
Eric M. Huang
Robert D. Labrom
Geoffrey N. Askin
Clayton J. Adam
Mark J. Pearcy
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2017
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-017-0131-1

Other articles of this Issue 1/2017

Scoliosis and Spinal Disorders 1/2017 Go to the issue