Skip to main content
Top
Published in: Head & Face Medicine 1/2019

Open Access 01-12-2019 | Caries | Research

Histological determination of cariously altered collagen after dentin caries excavation with the polymer bur PolyBur P1 in comparison to a conventional bud bur

Authors: Jeannine Lohmann, Edgar Schäfer, Till Dammaschke

Published in: Head & Face Medicine | Issue 1/2019

Login to get access

Abstract

Background

To compare the polymer bur PolyBur P1 (P1) with tungsten carbide bud bur H1 SE (H1) in removing cariously altered collagen during dentin caries excavation.

Methods

Fifty extracted teeth were split in the center of a carious lesion. The 100 specimens were randomly divided into 5 groups. Five dentists were asked to excavate 10 teeth each: one half with P1 and the corresponding half with H1. The time needed for caries excavation was measured. Subsequently, histological specimens were produced and analyzed by light-microscope after Mallory-Azan-staining. The thickness of remaining cariously altered collagen was measured (< 1 mm or > 1 mm). The results were statistically evaluated.

Results

The average time to excavate a cavity with P1 was 254 (± 148) sec and 202 (± 129) sec with H1. The difference in times was not statistically significant (p > 0.05). In the group P1 in 66.1% of the sections cariously altered collagen remained, whereas 33.9% showed sound collagen. In the group H1 45.7% sections had remaining cariously altered collagen and 54.3% showed sound collagen. The difference between P1 and H1 was statistically significant (p = 0.004). In the group P1 the layer of cariously altered collagen was significantly more often thicker than 1 mm than in the group H1 (p < 0.05). The variable “type of bur” had a statistically significant influence for the presence of cariously altered collagen (p = 0.003).

Conclusions

Conventional H1 bud burs were significantly more effective in removing cariously altered collagen during dentin caries excavation than the polymer bur P1.
Literature
1.
go back to reference Buchalla W, Frankenberger R, Galler K, Krastl G, Kunzelmann K-H, Paris S, Schäfer E. Current clinical practice guidelines for caries excavation. Dtsch Zahnärztl Z. 2017;72:484–94. Buchalla W, Frankenberger R, Galler K, Krastl G, Kunzelmann K-H, Paris S, Schäfer E. Current clinical practice guidelines for caries excavation. Dtsch Zahnärztl Z. 2017;72:484–94.
2.
go back to reference Celiberti P, Francescut P, Lussi A. Performance of four dentine excavation methods in deciduous teeth. Caries Res. 2006;40:117–23.CrossRef Celiberti P, Francescut P, Lussi A. Performance of four dentine excavation methods in deciduous teeth. Caries Res. 2006;40:117–23.CrossRef
3.
go back to reference Neves AA, Coutinho E, de Munck J, van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: a micro-CT investigation. J Dent. 2011;39:154–62.CrossRef Neves AA, Coutinho E, de Munck J, van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: a micro-CT investigation. J Dent. 2011;39:154–62.CrossRef
4.
go back to reference Meredith N, Sherriff M, Setchell DJ, Swanson SAV. Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique. Arch Oral Biol. 1996;41:539–45.CrossRef Meredith N, Sherriff M, Setchell DJ, Swanson SAV. Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique. Arch Oral Biol. 1996;41:539–45.CrossRef
5.
go back to reference Banerjee A, Sherriff M, Kidd EAM, Watson TF. A confocal microscopic study relating the autofluorescence of carious dentine to its microhardness. Br Dent J. 1999;87:206–10. Banerjee A, Sherriff M, Kidd EAM, Watson TF. A confocal microscopic study relating the autofluorescence of carious dentine to its microhardness. Br Dent J. 1999;87:206–10.
6.
go back to reference Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mat Res A. 2003;66:850–3.CrossRef Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mat Res A. 2003;66:850–3.CrossRef
7.
go back to reference Fusayama T, Okuse K, Hosoda H. Relationship between hardness, dicoloration, and microbial invasion in carious dentin. J Dent Res. 1966;45:1033–46.CrossRef Fusayama T, Okuse K, Hosoda H. Relationship between hardness, dicoloration, and microbial invasion in carious dentin. J Dent Res. 1966;45:1033–46.CrossRef
8.
go back to reference Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, Watson TF, Banerjee A, Festy F. Microbiological analysis of carious dentine using raman and fluorescence spectroscopy. Caries Res. 2012;46:432–40.CrossRef Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, Watson TF, Banerjee A, Festy F. Microbiological analysis of carious dentine using raman and fluorescence spectroscopy. Caries Res. 2012;46:432–40.CrossRef
9.
go back to reference Yamada T, Nakamura K, Iwaku M, Fusayama T. The extent of the odontoblast process in normal and carious human dentin. J Dent Res. 1983;62:798–802.CrossRef Yamada T, Nakamura K, Iwaku M, Fusayama T. The extent of the odontoblast process in normal and carious human dentin. J Dent Res. 1983;62:798–802.CrossRef
10.
go back to reference Horiguchi ST, Yamada T, Inokoshi S, Tagami J. Selective caries removal with air abrasion. Oper Dent. 1998;23:236–43.PubMed Horiguchi ST, Yamada T, Inokoshi S, Tagami J. Selective caries removal with air abrasion. Oper Dent. 1998;23:236–43.PubMed
11.
go back to reference Boston DW. New device for selective dentin caries removal. Quintessence Int. 2003;34:678–85.PubMed Boston DW. New device for selective dentin caries removal. Quintessence Int. 2003;34:678–85.PubMed
12.
go back to reference Silva NRFA, Carvalho RM, Pegoraro LF, Tay FR, Thompson VP. Evaluation of a self-limiting concept in dentinal caries removal. J Dent Res. 2006;85:282–6.CrossRef Silva NRFA, Carvalho RM, Pegoraro LF, Tay FR, Thompson VP. Evaluation of a self-limiting concept in dentinal caries removal. J Dent Res. 2006;85:282–6.CrossRef
13.
go back to reference Dammaschke T, Rodenberg TN, Schäfer E, Ott KHR. Efficiency of the polymer bur SmartPrep compared with conventional tungsten carbide bud bur in dentin caries excavation. Oper Dent. 2006;31:256–60.CrossRef Dammaschke T, Rodenberg TN, Schäfer E, Ott KHR. Efficiency of the polymer bur SmartPrep compared with conventional tungsten carbide bud bur in dentin caries excavation. Oper Dent. 2006;31:256–60.CrossRef
14.
go back to reference Prabhakar A, Kiran NK. Clinical evaluation of polyamide polymer burs for selective dentin removal. J Contemp Dent Pract. 2009;10:26–34.PubMed Prabhakar A, Kiran NK. Clinical evaluation of polyamide polymer burs for selective dentin removal. J Contemp Dent Pract. 2009;10:26–34.PubMed
15.
go back to reference Isik EE, Ölmez A, Akca G, Sultan N. A microbiological assessment of polymer and conventional carbide burs in caries removal. Pediatr Dent. 2010;32:316–23.PubMed Isik EE, Ölmez A, Akca G, Sultan N. A microbiological assessment of polymer and conventional carbide burs in caries removal. Pediatr Dent. 2010;32:316–23.PubMed
16.
go back to reference Divya G, Prasad MG, Vasa AA, Vasanthi D, Ramanarayana B, Mynampati P. Evaluation on the efficacy of caries removal using polymer bur, stainless steel bur, Carisov, Papacarie – an in vitro comparative study. J Clin Diagn Res. 2015;9:ZC42–6.PubMedPubMedCentral Divya G, Prasad MG, Vasa AA, Vasanthi D, Ramanarayana B, Mynampati P. Evaluation on the efficacy of caries removal using polymer bur, stainless steel bur, Carisov, Papacarie – an in vitro comparative study. J Clin Diagn Res. 2015;9:ZC42–6.PubMedPubMedCentral
17.
go back to reference Toledano M, Cabello I, Yamauti M, Osorio R. Differential resin-dentin bonds created after caries removal with polymer burs. Microsc Microanal. 2012;18:497–508.CrossRef Toledano M, Cabello I, Yamauti M, Osorio R. Differential resin-dentin bonds created after caries removal with polymer burs. Microsc Microanal. 2012;18:497–508.CrossRef
18.
go back to reference Toledano M, Ghinea R, Cardona JC, Cabello I, Yamauti M, Pérez MM, Osorio R. Digital image analysis method to assess the performance of conventional and self-limiting concepts in dentine caries removal. J Dent. 2013;41(Suppl 3):e31–8.CrossRef Toledano M, Ghinea R, Cardona JC, Cabello I, Yamauti M, Pérez MM, Osorio R. Digital image analysis method to assess the performance of conventional and self-limiting concepts in dentine caries removal. J Dent. 2013;41(Suppl 3):e31–8.CrossRef
19.
go back to reference Ferraz C, Freire AR, Mendonça JS, Fernandes CAO, Cordona JC, Yamauti M. Effectiveness of different mechanical methods on dentin caries removal: micro-CT and digital image evaluation. Oper Dent. 2015;40:263–70.CrossRef Ferraz C, Freire AR, Mendonça JS, Fernandes CAO, Cordona JC, Yamauti M. Effectiveness of different mechanical methods on dentin caries removal: micro-CT and digital image evaluation. Oper Dent. 2015;40:263–70.CrossRef
20.
go back to reference Aswathi KK, Rani SP, Athimuthu A, Prasanna P, Patil P, Deepali KJ. Comparison of efficacy of caries removal using polymer bur and chemomechanical caries removal agent: a clinical and microbiogical assessment – an in vivo study. J Indian Soc Pedod Prev Dent. 2017;35:6–13.CrossRef Aswathi KK, Rani SP, Athimuthu A, Prasanna P, Patil P, Deepali KJ. Comparison of efficacy of caries removal using polymer bur and chemomechanical caries removal agent: a clinical and microbiogical assessment – an in vivo study. J Indian Soc Pedod Prev Dent. 2017;35:6–13.CrossRef
21.
go back to reference Usha C, Ranjani R. Comparative evaluation of two commercially available polymer burs for their efficacy on dentinal caries removal – split tooth study using polarized light microscopy. J Sci Dent. 2012;2:66–9. Usha C, Ranjani R. Comparative evaluation of two commercially available polymer burs for their efficacy on dentinal caries removal – split tooth study using polarized light microscopy. J Sci Dent. 2012;2:66–9.
22.
go back to reference Hauman CHJ, Kuzmanovic DV. An evaluation of polymer rotary-instruments´ ability to remove healthy, non-carious dentine. Eur J Prothodont Rest Dent. 2007;15:77–80. Hauman CHJ, Kuzmanovic DV. An evaluation of polymer rotary-instruments´ ability to remove healthy, non-carious dentine. Eur J Prothodont Rest Dent. 2007;15:77–80.
23.
go back to reference Meller C, Welk A, Zeligowski T, Splieth C. Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quintessence Int. 2007;38:565–9.PubMed Meller C, Welk A, Zeligowski T, Splieth C. Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quintessence Int. 2007;38:565–9.PubMed
24.
go back to reference Zakirulla M, Uloopi KS, Subba Reddy VV. In vitro comparison of reduction in bacterial count after caries excavation with 3 different techniques. J Dent Child. 2011;78:31–5. Zakirulla M, Uloopi KS, Subba Reddy VV. In vitro comparison of reduction in bacterial count after caries excavation with 3 different techniques. J Dent Child. 2011;78:31–5.
25.
go back to reference Medioni E, Rocca J-P, Fornaini C, Merigo E. Histological evaluation of three techniques for caries removal. J Oral Sci. 2016;58:583–9.CrossRef Medioni E, Rocca J-P, Fornaini C, Merigo E. Histological evaluation of three techniques for caries removal. J Oral Sci. 2016;58:583–9.CrossRef
26.
go back to reference Mulisch M, Welsch U (eds.) Romeis - Mikroskopische Technik. Springer, Berlin 2015. Mulisch M, Welsch U (eds.) Romeis - Mikroskopische Technik. Springer, Berlin 2015.
27.
go back to reference Scheutzel P. Möglichkeiten und Grenzen des Caridex-Systems als Alternative zur herkömmlichen Kariesentfernung. Dtsch Zahnärztl Z. 1989;44:612–4.PubMed Scheutzel P. Möglichkeiten und Grenzen des Caridex-Systems als Alternative zur herkömmlichen Kariesentfernung. Dtsch Zahnärztl Z. 1989;44:612–4.PubMed
28.
go back to reference Ohgushi K, Fusayama T. Electron microscopic structure of two layers of carious dentin. J Dent Res. 1975;54:1019–26.CrossRef Ohgushi K, Fusayama T. Electron microscopic structure of two layers of carious dentin. J Dent Res. 1975;54:1019–26.CrossRef
29.
go back to reference Kuboki Y, Ohgushi K, Fusayama T. Collagen biochemistry of two layers of carious dentin. J Dent Res. 1977;56:1233–7.CrossRef Kuboki Y, Ohgushi K, Fusayama T. Collagen biochemistry of two layers of carious dentin. J Dent Res. 1977;56:1233–7.CrossRef
30.
go back to reference ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res. 2001;80:1407–11.CrossRef ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res. 2001;80:1407–11.CrossRef
31.
go back to reference Ohgushi K. Collagen fibers in the two layers of carious dentin. 1. Histochemical study. Kokubyo Gakkai Zasshi. 1973;40:65–74.CrossRef Ohgushi K. Collagen fibers in the two layers of carious dentin. 1. Histochemical study. Kokubyo Gakkai Zasshi. 1973;40:65–74.CrossRef
32.
go back to reference Dammaschke T, Dähne L, Kaup M, Stratmann U, Ott K. Efficacy of Carisolv compared with conventional methods for removing carious dentine. Dtsch Zahnärztl Z. 2001;56:472–5. Dammaschke T, Dähne L, Kaup M, Stratmann U, Ott K. Efficacy of Carisolv compared with conventional methods for removing carious dentine. Dtsch Zahnärztl Z. 2001;56:472–5.
33.
go back to reference Dammaschke T, Eickmeier M, Schäfer E, Danesh G, Ott KHR. Effectiveness of Carisolv in comparison with sodium hypochlorite and calcium hydroxide. Acta Odontol Scand. 2005;63:110–4.CrossRef Dammaschke T, Eickmeier M, Schäfer E, Danesh G, Ott KHR. Effectiveness of Carisolv in comparison with sodium hypochlorite and calcium hydroxide. Acta Odontol Scand. 2005;63:110–4.CrossRef
34.
go back to reference Dammaschke T, Vesnić A, Schäfer E. In vitro comparison of ceramic burs and conventional tungsten carbide bud burs in dentin caries excavation. Quintessence Int. 2008;39:495–9.PubMed Dammaschke T, Vesnić A, Schäfer E. In vitro comparison of ceramic burs and conventional tungsten carbide bud burs in dentin caries excavation. Quintessence Int. 2008;39:495–9.PubMed
35.
go back to reference Banerjee A, Kidd EAM, Watson TF. In vitro validation of carious dentin removal using different excavation criteria. Am J Dent. 2003;16:228–30.PubMed Banerjee A, Kidd EAM, Watson TF. In vitro validation of carious dentin removal using different excavation criteria. Am J Dent. 2003;16:228–30.PubMed
36.
go back to reference Hassan AF, Yadav G, Tripathi AM, Mehrotra M, Saha S, Garg N. A comparative evaluation of the efficacy of different caries excavation techniques in reducing the cariogenic flora: an in vivo study. Int J Clin Pediatr Dent. 2016;9:214–7.PubMedPubMedCentral Hassan AF, Yadav G, Tripathi AM, Mehrotra M, Saha S, Garg N. A comparative evaluation of the efficacy of different caries excavation techniques in reducing the cariogenic flora: an in vivo study. Int J Clin Pediatr Dent. 2016;9:214–7.PubMedPubMedCentral
37.
go back to reference Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent. 2010;38:687–97.CrossRef Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent. 2010;38:687–97.CrossRef
Metadata
Title
Histological determination of cariously altered collagen after dentin caries excavation with the polymer bur PolyBur P1 in comparison to a conventional bud bur
Authors
Jeannine Lohmann
Edgar Schäfer
Till Dammaschke
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Caries
Published in
Head & Face Medicine / Issue 1/2019
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-019-0205-9

Other articles of this Issue 1/2019

Head & Face Medicine 1/2019 Go to the issue