Skip to main content
Top
Published in: Head & Face Medicine 1/2019

Open Access 01-12-2019 | Digital Volume Tomography | Research

Comparison of condylar morphology changes and position stability following unilateral and bilateral sagittal split mandibular ramus osteotomy in patients with mandibular prognathism

Authors: Han Lin, Yifan He, Yifan Feng, Fang Huang

Published in: Head & Face Medicine | Issue 1/2019

Login to get access

Abstract

Background

Unilateral sagittal split ramus osteotomy (USSRO) is not widely used given the postoperative instability caused by the inevitable rotation of the mandibular segment during surgery. However, the influence of mandibular movement on the condylar morphology and position stability has not been completely explored. The aim of the study was to quantitatively evaluate the effect of USSRO on the condylar surface morphology changes and postoperative stability in patients with mandibular lateral prognathism and compare these findings with the classic bilateral sagittal split ramus osteotomy (BSSRO).

Patients/methods

This was a retrospective study involving 134 patients with mandibular lateral prognathism who received USSRO (n = 56) and BSSRO (n = 78) surgery. Here, cone beam computed tomography (CBCT) was performed before surgery (T0), immediately after surgery (T1), and 1 year postoperatively (T2). Differences of condylar sizes, condylar surface deviation, and mandibular positioning parameters (dental midline deviation, SNB, SN-MP) were calculated from T0 to T2. Comparisons were performed at the deviated side or nondeviated side of condyles between the USSRO and BSSRO groups. The relation between the dental midline deviation and condylar surface morphology changes from T0 to T2 were investigated.

Results

Condylar surface morphology changes at the deviated side of temporomandibular joint (TMJ) before and 1 year after the surgery were significantly different between the USSRO and BSSRO groups. The dental midline deviation was related to the changes of condylar volume, surface size and surface deviation at the deviated side of TMJ in patients following USSRO. No significant difference was noted between the USSRO and BSSRO groups for postoperative condylar surface morphology changes at the nondeviated side. In both groups, significant differences between T0 and T1 and no significant difference between T1 and T2 were noted for all of the mandibular positioning parameters.

Conclusions

Both BSSRO and USSRO exhibit favorable postoperative stability in the correction of mandibular prognathism. After USSRO surgery, condylar surface changes occurred at the deviated side of the TMJ, and the dental midline deviation was closely related to the changes of condylar surface morphology. USSRO represents a stable alternative for minor asymmetric mandibular prognathism correction with the advantages of reduced operating time and surgical trauma.
Literature
2.
go back to reference Beukes J, Reyneke JP, Damstra J. Unilateral sagittal split mandibular ramus osteotomy: indications and geometry. Br J Oral Maxillofac Surg. 2016;54(2):219–23.PubMedCrossRef Beukes J, Reyneke JP, Damstra J. Unilateral sagittal split mandibular ramus osteotomy: indications and geometry. Br J Oral Maxillofac Surg. 2016;54(2):219–23.PubMedCrossRef
3.
go back to reference Mã¶Hlhenrich, S.C, et al. Bony contact area and displacement of the temporomandibular joint after high-oblique and bilateral sagittal split osteotomy: a computer-simulated comparison. Br J Oral Maxillofac Surg. 2016;54(3):306–11.CrossRef Mã¶Hlhenrich, S.C, et al. Bony contact area and displacement of the temporomandibular joint after high-oblique and bilateral sagittal split osteotomy: a computer-simulated comparison. Br J Oral Maxillofac Surg. 2016;54(3):306–11.CrossRef
4.
go back to reference Yang HJ, Hwang SJ. Evaluation of postoperative stability after BSSRO to correct facial asymmetry depending on the amount of bone contact between the proximal and distal segment. J Craniomaxillofac Surg. 2014;42(5):e165–70.PubMedCrossRef Yang HJ, Hwang SJ. Evaluation of postoperative stability after BSSRO to correct facial asymmetry depending on the amount of bone contact between the proximal and distal segment. J Craniomaxillofac Surg. 2014;42(5):e165–70.PubMedCrossRef
5.
go back to reference Wohlwender I, et al. Condylar resorption and functional outcome after unilateral sagittal split osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):315–21.PubMedCrossRef Wohlwender I, et al. Condylar resorption and functional outcome after unilateral sagittal split osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):315–21.PubMedCrossRef
6.
go back to reference Ueki K, et al. P.286 condylar and disc position after sagittal split ramus osteotomy with and without Le fort I osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;34(3):342–8.CrossRef Ueki K, et al. P.286 condylar and disc position after sagittal split ramus osteotomy with and without Le fort I osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;34(3):342–8.CrossRef
7.
go back to reference Kim MI, et al. Condylar positioning changes following unilateral sagittal split ramus osteotomy in patients with mandibular prognathism. Maxillofac Plast Reconstr Surg. 2015;37(1):1–7.PubMedPubMedCentralCrossRef Kim MI, et al. Condylar positioning changes following unilateral sagittal split ramus osteotomy in patients with mandibular prognathism. Maxillofac Plast Reconstr Surg. 2015;37(1):1–7.PubMedPubMedCentralCrossRef
8.
go back to reference Xi T, et al. Validation of a novel semi-automated method for three-dimensional surface rendering of condyles using cone beam computed tomography data. Int J Oral Maxillofac Surg. 2013;42(8):1023–9.PubMedCrossRef Xi T, et al. Validation of a novel semi-automated method for three-dimensional surface rendering of condyles using cone beam computed tomography data. Int J Oral Maxillofac Surg. 2013;42(8):1023–9.PubMedCrossRef
10.
go back to reference An SB, et al. Effect of post-orthognathic surgery condylar axis changes on condylar morphology as determined by 3-dimensional surface reconstruction. Angle Orthod. 2013;84(2):316–21.PubMedCrossRef An SB, et al. Effect of post-orthognathic surgery condylar axis changes on condylar morphology as determined by 3-dimensional surface reconstruction. Angle Orthod. 2013;84(2):316–21.PubMedCrossRef
11.
go back to reference De Moraes PH, et al. Condylar resorption after orthognathic surgery: a systematic review. Int J Morphol. 2012;30(3):1023–8.PubMedCrossRef De Moraes PH, et al. Condylar resorption after orthognathic surgery: a systematic review. Int J Morphol. 2012;30(3):1023–8.PubMedCrossRef
12.
go back to reference Hunsuck EE. A modified intraoral sagittal splitting technic for correction of mandibular prognathism. J Oral Maxillofac Surg. 1968;26:250–4. Hunsuck EE. A modified intraoral sagittal splitting technic for correction of mandibular prognathism. J Oral Maxillofac Surg. 1968;26:250–4.
13.
go back to reference Tecco S, et al. Condylar volume and surface in Caucasian young adult subjects. BMC Med Imaging. 2010;10(1):1–10.CrossRef Tecco S, et al. Condylar volume and surface in Caucasian young adult subjects. BMC Med Imaging. 2010;10(1):1–10.CrossRef
14.
go back to reference Park SB, et al. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition. J Oral Maxillofac Surg. 2012;70(8):1951–9.PubMedCrossRef Park SB, et al. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition. J Oral Maxillofac Surg. 2012;70(8):1951–9.PubMedCrossRef
15.
go back to reference Fariña R, et al. Unilateral sagittal split ramus osteotomy: an alternative for some cases of asymmetric mandibular prognathism. Int J Oral Maxillofac Surg. 2018;47(5):630–37.PubMedCrossRef Fariña R, et al. Unilateral sagittal split ramus osteotomy: an alternative for some cases of asymmetric mandibular prognathism. Int J Oral Maxillofac Surg. 2018;47(5):630–37.PubMedCrossRef
16.
go back to reference Hu J, Wang D, Zou S. Effects of mandibular setback on the temporomandibular joint: a comparison of oblique and sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2000;58(4):375–80.PubMedCrossRef Hu J, Wang D, Zou S. Effects of mandibular setback on the temporomandibular joint: a comparison of oblique and sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2000;58(4):375–80.PubMedCrossRef
17.
go back to reference Komori E, Aigase K, Sugisaki M, Tanabe H. Cause of early skeletal relapse after mandibular setback. Am J Orthod Dentofac Orthop. 1989;95:29–36.CrossRef Komori E, Aigase K, Sugisaki M, Tanabe H. Cause of early skeletal relapse after mandibular setback. Am J Orthod Dentofac Orthop. 1989;95:29–36.CrossRef
18.
go back to reference Van Sickels JE, Larsen AJ, Thrash WJ. Relapse after rigid fixation of mandibular advancement. J Oral Maxillofac Surg. 1986;44:698–702.PubMedCrossRef Van Sickels JE, Larsen AJ, Thrash WJ. Relapse after rigid fixation of mandibular advancement. J Oral Maxillofac Surg. 1986;44:698–702.PubMedCrossRef
19.
go back to reference Boulétreau P, et al. Focus on the effect of orthognathic surgery on condylar remodeling. Rev Stomatol Chir Maxillofac. 2004;105(5):283–8.PubMedCrossRef Boulétreau P, et al. Focus on the effect of orthognathic surgery on condylar remodeling. Rev Stomatol Chir Maxillofac. 2004;105(5):283–8.PubMedCrossRef
20.
go back to reference Hohe J, et al. Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn Reson Med. 2010;47(3):554–61.CrossRef Hohe J, et al. Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn Reson Med. 2010;47(3):554–61.CrossRef
21.
go back to reference Matsumoto K, et al. Discrepancy of coronal morphology between mandibular condyle and fossa is related to pathogenesis of anterior disk displacement of the temporomandibular joint. Oral Surgery Oral Med Oral Pathol Oral Radiol. 2013;116(5):626–32.CrossRef Matsumoto K, et al. Discrepancy of coronal morphology between mandibular condyle and fossa is related to pathogenesis of anterior disk displacement of the temporomandibular joint. Oral Surgery Oral Med Oral Pathol Oral Radiol. 2013;116(5):626–32.CrossRef
22.
go back to reference Han YS, et al. Three-dimensional computed tomographic assessment of temporomandibular joint stability after orthognathic surgery. J Oral Maxillofac Surg. 2016;74(7):1454–62.PubMedCrossRef Han YS, et al. Three-dimensional computed tomographic assessment of temporomandibular joint stability after orthognathic surgery. J Oral Maxillofac Surg. 2016;74(7):1454–62.PubMedCrossRef
23.
go back to reference Hwang HS, et al. Maxillofacial 3-dimensional image analysis for the diagnosis of facial asymmetry. Am J Orthod Dentofac Orthop. 2006;130(6):779–85.CrossRef Hwang HS, et al. Maxillofacial 3-dimensional image analysis for the diagnosis of facial asymmetry. Am J Orthod Dentofac Orthop. 2006;130(6):779–85.CrossRef
24.
go back to reference Saccucci M, et al. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis. Head Face Med. 2012;8(1):15.PubMedPubMedCentralCrossRef Saccucci M, et al. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis. Head Face Med. 2012;8(1):15.PubMedPubMedCentralCrossRef
25.
go back to reference Ok SM, Lee J, Kim YI, Lee JY, Kim KB, Jeong SH. Anterior condylar remodeling observed in stabilization splint therapy for temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2014;118(3):363–70.CrossRef Ok SM, Lee J, Kim YI, Lee JY, Kim KB, Jeong SH. Anterior condylar remodeling observed in stabilization splint therapy for temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2014;118(3):363–70.CrossRef
26.
go back to reference Hoppenreijs TJM, Maal T, Xi T. Evaluation of condylar resorption before and after orthognathic surgery. Semin Orthod. 2013;19(2):106–15.CrossRef Hoppenreijs TJM, Maal T, Xi T. Evaluation of condylar resorption before and after orthognathic surgery. Semin Orthod. 2013;19(2):106–15.CrossRef
27.
go back to reference Lee SG, et al. Stability of unilateral sagittal split ramus osteotomy for correction of facial asymmetry: long-term case series and literature review. J Korean Assoc Oral Maxillofac Surg. 2015;41(3):156–64.PubMedPubMedCentralCrossRef Lee SG, et al. Stability of unilateral sagittal split ramus osteotomy for correction of facial asymmetry: long-term case series and literature review. J Korean Assoc Oral Maxillofac Surg. 2015;41(3):156–64.PubMedPubMedCentralCrossRef
Metadata
Title
Comparison of condylar morphology changes and position stability following unilateral and bilateral sagittal split mandibular ramus osteotomy in patients with mandibular prognathism
Authors
Han Lin
Yifan He
Yifan Feng
Fang Huang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2019
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-019-0202-z

Other articles of this Issue 1/2019

Head & Face Medicine 1/2019 Go to the issue