Skip to main content
Top
Published in: Journal of Ethnobiology and Ethnomedicine 1/2018

Open Access 01-12-2018 | Research

Ethnobotanical survey of plants used as repellents against housefly, Musca domestica L. (Diptera: Muscidae) in Budondo Subcounty, Jinja District, Uganda

Authors: Kalori Baana, Harriet Angwech, Geoffrey Maxwell Malinga

Published in: Journal of Ethnobiology and Ethnomedicine | Issue 1/2018

Login to get access

Abstract

Background

The housefly, Musca domestica L., is a major public health and domestic pest that spoils food and causes irritation and is a vector of many infectious disease pathogens of medical and veterinary importance. Currently, its control relies largely on chemical pesticides. However, the adverse health and environmental effects of pesticides, risk of development of insect resistance, and bioaccumulation through the food chain emphasize the need to search for environmentally friendly alternatives. This study aimed at documenting traditional knowledge about plants used as repellents against the houseflies by the people of Budondo Subcounty, Uganda.

Methods

An ethnobotanical survey was conducted between November 2016 and June 2017. A total of 372 household members were interviewed on knowledge and use of traditional insect repellents, through face-to-face interviews guided by semi-structured questionnaires administered in nine villages in Budondo Subcounty.

Results

Overall, only 24.5% of the respondents had ample knowledge about insect repellent plants. A chi-square analysis shows a significant association between respondents’ knowledge of insect repellent plants and age, educational status, occupation, religion, and marital status although not with gender. Overall, eight plants from seven families and eight genera were mentioned as repellents. The growth forms encountered were tree, shrub, and herb. Plants that were commonly mentioned by respondents were Cupressus sempervirens L. (16.9%), followed by Lantana camara L.(16.1%), Eucalyptus globulus Labill. (11.0%), Carica papaya L. (8.6%), Cymbopogon citratus (de Candolle) Stapf (4.3%), Mentha × piperita L. (2.4%), Azadirachta indica A. Juss (2.2%), and Ocimum kilimandscharicum Gürke (0.8%) in descending order. Leaves were the most commonly used plant part (76.9%), followed by the stem/bark (19.8%), flowers (2.2%), and root (1.1%). Burning of the plant materials in order to generate smoke was the most popular method of application.

Conclusions

This study has shown that there are many locally available plants in use by the people of Budondo Subcounty with potency for repelling houseflies. Further studies are needed to identify bioactive compounds responsible for the repellent activity in the different species which could be promoted as sustainable housefly control tools in these remotely located communities of Budondo. Furthermore, studies on the efficacy of these repellent plants or plant parts and their potential toxicological properties should be considered a priority.
Literature
1.
go back to reference Kumar P, Mishra S, Malik A, Satya S. Insecticidal evaluation of essential oils of Citrus sinensis L. (Myrtales: Myrtaceae) against housefly, Musca domestica L. (Diptera: Muscidae). Parasitol Res. 2012;110:1929–36.CrossRefPubMed Kumar P, Mishra S, Malik A, Satya S. Insecticidal evaluation of essential oils of Citrus sinensis L. (Myrtales: Myrtaceae) against housefly, Musca domestica L. (Diptera: Muscidae). Parasitol Res. 2012;110:1929–36.CrossRefPubMed
2.
go back to reference Bulter FC, Garcia-Maruniak A, Meek F, Marunaik JE. Wild Florida house flies (Musca domestica) as carriers of pathogenic bacteria. Fla Entomol. 2010;93:218–23.CrossRef Bulter FC, Garcia-Maruniak A, Meek F, Marunaik JE. Wild Florida house flies (Musca domestica) as carriers of pathogenic bacteria. Fla Entomol. 2010;93:218–23.CrossRef
3.
go back to reference Meerberg BG, Vermeer HM, Kijlstra M. Controlling of pathogen transmission by flies on organic pig farms. Outlook Agric. 2007;36:193–7.CrossRef Meerberg BG, Vermeer HM, Kijlstra M. Controlling of pathogen transmission by flies on organic pig farms. Outlook Agric. 2007;36:193–7.CrossRef
4.
go back to reference Fotedar R. Vector potential of Musca domestica in transmission of Vibrio cholera in India. Acta Trop. 2001;78(1):31–4.CrossRefPubMed Fotedar R. Vector potential of Musca domestica in transmission of Vibrio cholera in India. Acta Trop. 2001;78(1):31–4.CrossRefPubMed
5.
go back to reference Umeche N, Mandah LE. Musca domestica as carrier of intestinal helminths in Calabar, Nigeria. East Afr Med J. 1989;65(5):349–52. Umeche N, Mandah LE. Musca domestica as carrier of intestinal helminths in Calabar, Nigeria. East Afr Med J. 1989;65(5):349–52.
6.
go back to reference Fotedar R, Banerjee U, Singh S, Shriniwus, Verma AK. The housefly (Musca domestica) as carrier of pathogenic microorganisms in a hospital environment. J Hosp Infect. 1992;20:209–15.CrossRefPubMed Fotedar R, Banerjee U, Singh S, Shriniwus, Verma AK. The housefly (Musca domestica) as carrier of pathogenic microorganisms in a hospital environment. J Hosp Infect. 1992;20:209–15.CrossRefPubMed
7.
go back to reference Malik A, Singh N, Satya S. Housefly (Musca domestica) a review of control strategies for a challenging pest. J Environ Sci Health. 2007;42:453–67.CrossRef Malik A, Singh N, Satya S. Housefly (Musca domestica) a review of control strategies for a challenging pest. J Environ Sci Health. 2007;42:453–67.CrossRef
8.
go back to reference Wanaratana S, Panyim S, Pakpinyo S. The potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions. Med Vet Entomol. 2011;25:58–63.CrossRefPubMed Wanaratana S, Panyim S, Pakpinyo S. The potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions. Med Vet Entomol. 2011;25:58–63.CrossRefPubMed
9.
go back to reference Wanaratana S, Amonsin A, Chaisingh A, Panyim S, Sasipreeyajan J, Pakpinyo S. Experimental assessment of houseflies as vectors in avian influenza subtype H5N1 transmission in chickens. Avian Dis. 2013;57(2):266–72.CrossRefPubMed Wanaratana S, Amonsin A, Chaisingh A, Panyim S, Sasipreeyajan J, Pakpinyo S. Experimental assessment of houseflies as vectors in avian influenza subtype H5N1 transmission in chickens. Avian Dis. 2013;57(2):266–72.CrossRefPubMed
10.
go back to reference Kumar P, Mishra S, Malik A, Satya S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol Res. 2013;112(1):69–76.CrossRefPubMed Kumar P, Mishra S, Malik A, Satya S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol Res. 2013;112(1):69–76.CrossRefPubMed
11.
go back to reference Chauhan N, Malik A, Sharma S. Repellency potential of essential oils against housefly, Musca domestica L. Environ Sci Pollut Res Int. 2018;25(5):4707–14.CrossRefPubMed Chauhan N, Malik A, Sharma S. Repellency potential of essential oils against housefly, Musca domestica L. Environ Sci Pollut Res Int. 2018;25(5):4707–14.CrossRefPubMed
12.
go back to reference Pavela R, Benelli G. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol. 2016;167:103–8.CrossRefPubMed Pavela R, Benelli G. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol. 2016;167:103–8.CrossRefPubMed
13.
go back to reference Sharma PP, Pardeshi AB, Vijigiri D. Bioactivity of some medicinal plant extracts against Musca domestica L. J Ecobiotechnol. 2011;3(9):14–6. Sharma PP, Pardeshi AB, Vijigiri D. Bioactivity of some medicinal plant extracts against Musca domestica L. J Ecobiotechnol. 2011;3(9):14–6.
14.
go back to reference Moore SJ, Lenglet A, Hill N. Plant-based insect repellents. In: Insect repellents: principles methods, and use. Boca Raton, Florida: CRC Press; 2006. Moore SJ, Lenglet A, Hill N. Plant-based insect repellents. In: Insect repellents: principles methods, and use. Boca Raton, Florida: CRC Press; 2006.
15.
go back to reference Mavundza EJ, Muharaj R, Finnie JF, Kabera G, Van Staden J. An ethnobotanical survey of mosquito repellent plants in uMkhanyakude district, KwaZulu-Natal province, South Africa. Aust J Pharm. 2011;137:1516–20. Mavundza EJ, Muharaj R, Finnie JF, Kabera G, Van Staden J. An ethnobotanical survey of mosquito repellent plants in uMkhanyakude district, KwaZulu-Natal province, South Africa. Aust J Pharm. 2011;137:1516–20.
16.
go back to reference Karunamoorthi K, Ilango K, Endale A. Ethnobotanical survey of knowledge and usage custom of traditional insect/mosquito repellent plants among the Ethiopian Oromo ethnic group. J Ethnopharmacol. 2009;125(2):224–9.CrossRefPubMed Karunamoorthi K, Ilango K, Endale A. Ethnobotanical survey of knowledge and usage custom of traditional insect/mosquito repellent plants among the Ethiopian Oromo ethnic group. J Ethnopharmacol. 2009;125(2):224–9.CrossRefPubMed
17.
go back to reference Karunamoorthi K, Tsehaye E. Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotheraphy. J Ethnopharmacol. 2012;141(1):143–50.CrossRefPubMed Karunamoorthi K, Tsehaye E. Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotheraphy. J Ethnopharmacol. 2012;141(1):143–50.CrossRefPubMed
18.
go back to reference Ntonifor NN, Ngufor CA, Kimbi HK, Oben BO. Traditional use of indigenous mosquito-repellents to protect humans against mosquitoes and other insect bites in a rural community of Cameroon. East Afr Med J. 2006;83(10):553–8.PubMed Ntonifor NN, Ngufor CA, Kimbi HK, Oben BO. Traditional use of indigenous mosquito-repellents to protect humans against mosquitoes and other insect bites in a rural community of Cameroon. East Afr Med J. 2006;83(10):553–8.PubMed
19.
go back to reference Anywar G, Charlotte IEA, Klooster V, Byamukama R, Willcox M, Nalumasi PA, de Jong J, Rwaburindori P, Kiremire BT. Medicinal plants used in the treatment and prevention of malaria in Cegere Subcounty, northern Uganda. Ethnobot Res Appl. 2016;14:506–16. Anywar G, Charlotte IEA, Klooster V, Byamukama R, Willcox M, Nalumasi PA, de Jong J, Rwaburindori P, Kiremire BT. Medicinal plants used in the treatment and prevention of malaria in Cegere Subcounty, northern Uganda. Ethnobot Res Appl. 2016;14:506–16.
20.
go back to reference Munthu C, Ayyapar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuran district of Tamil Nadu, India. J Ethnobiol Ethnomed. 2006;2:43.CrossRef Munthu C, Ayyapar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuran district of Tamil Nadu, India. J Ethnobiol Ethnomed. 2006;2:43.CrossRef
21.
go back to reference Krejcie RV, Morgan DW. Determining sample size for research activities. Educ Psychol Meas. 1970;30:607–10.CrossRef Krejcie RV, Morgan DW. Determining sample size for research activities. Educ Psychol Meas. 1970;30:607–10.CrossRef
22.
go back to reference Kariuki JM, Kariuki ST, Muchiri DR, Njoka E. Field evaluation of naturally occurring mosquito repellents in Mt. Kenya region, Kenya. Int J Biodivers Conserv. 2016;8(2):55–9.CrossRef Kariuki JM, Kariuki ST, Muchiri DR, Njoka E. Field evaluation of naturally occurring mosquito repellents in Mt. Kenya region, Kenya. Int J Biodivers Conserv. 2016;8(2):55–9.CrossRef
24.
go back to reference Karunamoorthi K, Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. J Ethnobiol Ethnomed. 2014;10:22.CrossRefPubMedPubMedCentral Karunamoorthi K, Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. J Ethnobiol Ethnomed. 2014;10:22.CrossRefPubMedPubMedCentral
25.
go back to reference Isman MB. Botanical insecticides, deterrants and repellents in modern agriculture in an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66.CrossRefPubMed Isman MB. Botanical insecticides, deterrants and repellents in modern agriculture in an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66.CrossRefPubMed
26.
go back to reference Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A. Fumigant toxicity of the essential oils of some African plants against Anopheles gambiae sensu stricto. Phytomedicine. 2005;12:241–6.CrossRefPubMed Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A. Fumigant toxicity of the essential oils of some African plants against Anopheles gambiae sensu stricto. Phytomedicine. 2005;12:241–6.CrossRefPubMed
27.
go back to reference Moore SJ, Lenglet A, Hill N. Field evaluation of three plant based insect repellent against malaria vector in Vaca Diez Province, the Bolivian Amazon. J Am Mosq Control Assoc. 2002;18(2):107–10.PubMed Moore SJ, Lenglet A, Hill N. Field evaluation of three plant based insect repellent against malaria vector in Vaca Diez Province, the Bolivian Amazon. J Am Mosq Control Assoc. 2002;18(2):107–10.PubMed
28.
go back to reference Karunamoorthi K, Husen E. Knowledge and self-reported practice of the local inhabitants on traditional insect repellents in western Hararghe Zone, Ethiopia. Aust J Pharm. 2012;141:212–9. Karunamoorthi K, Husen E. Knowledge and self-reported practice of the local inhabitants on traditional insect repellents in western Hararghe Zone, Ethiopia. Aust J Pharm. 2012;141:212–9.
29.
go back to reference Pålsson K, Jaenson TGT. Comparison of plant products and pyrethroid treated bed nets for protection against mosquitoes (Diptera: Culicidae) in Guinea Bissau, West Africa. J Med Entomol. 1999;36(2):144–8.CrossRefPubMed Pålsson K, Jaenson TGT. Comparison of plant products and pyrethroid treated bed nets for protection against mosquitoes (Diptera: Culicidae) in Guinea Bissau, West Africa. J Med Entomol. 1999;36(2):144–8.CrossRefPubMed
30.
go back to reference Seyoum A, Palsson K, Kung’a S, Kabiru EW, Lwande W, Killeen GF, Hassanali A, Knols BG. Traditional use of repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae, ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.CrossRefPubMed Seyoum A, Palsson K, Kung’a S, Kabiru EW, Lwande W, Killeen GF, Hassanali A, Knols BG. Traditional use of repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae, ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.CrossRefPubMed
31.
go back to reference Youmsi RDF, Fokou PVT, Menkem EZ, Bakarnga-Via I, Keumoe R, Nana V, Boyom FF. Ethnobotanical survey of medicinal plants used as insects repellents in six malaria endemic localities of Cameroon. J Ethnobiol Ethnomed. 2017;13(1):13.CrossRef Youmsi RDF, Fokou PVT, Menkem EZ, Bakarnga-Via I, Keumoe R, Nana V, Boyom FF. Ethnobotanical survey of medicinal plants used as insects repellents in six malaria endemic localities of Cameroon. J Ethnobiol Ethnomed. 2017;13(1):13.CrossRef
Metadata
Title
Ethnobotanical survey of plants used as repellents against housefly, Musca domestica L. (Diptera: Muscidae) in Budondo Subcounty, Jinja District, Uganda
Authors
Kalori Baana
Harriet Angwech
Geoffrey Maxwell Malinga
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ethnobiology and Ethnomedicine / Issue 1/2018
Electronic ISSN: 1746-4269
DOI
https://doi.org/10.1186/s13002-018-0235-6

Other articles of this Issue 1/2018

Journal of Ethnobiology and Ethnomedicine 1/2018 Go to the issue