Skip to main content
Top
Published in: Diagnostic Pathology 1/2017

Open Access 01-12-2017 | Research

PD-L1 and PD-1 expression are correlated with distinctive clinicopathological features in papillary thyroid carcinoma

Authors: Yanhua Bai, Dongfeng Niu, Xiaozheng Huang, Ling Jia, Qiang Kang, Fangyuan Dou, Xinqiang Ji, Weicheng Xue, Yiqiang Liu, Zhongwu Li, Qin Feng, Dongmei Lin, Kennichi Kakudo

Published in: Diagnostic Pathology | Issue 1/2017

Login to get access

Abstract

Background

Immune checkpoint blockade targeting PD-1/PD-L1 has shown efficacy in several types of cancers. However, the correlation between PD-L1/PD-1 expression and the specific clinicopathological features in papillary thyroid carcinoma (PTC) has not been investigated.

Methods

We examined the immunohistochemical expression of PD-L1, PD-1, and BRAF V600E on whole-tissue sections from 126 cases of primary PTC more than 1 cm in size. The correlation between the PD-L1/PD-1 expression and the clinicopathological features was evaluated.

Results

PD-L1 was positively expressed in 53.2% PTCs, and its expression was positively correlated with rich tumor-infiltrating lymphocytes (TILs), background chronic lymphocytic thyroiditis (CLT), female gender, absence of psammoma bodies, and PD-1 expression. Among these parameters, rich TILs, female gender, and absence of psammoma bodies were independent factors affecting PD-L1 expression on the multivariate logistic regression analysis. PD-1 expression was detected in the TILs and was positively correlated with rich TILs, background CLT, and absence of stromal calcification. Lack of stromal calcification was an independent factor affecting PD-1 expression. Neither PD-L1 nor PD-1 expression showed significant correlation with BRAF V600E expression.

Conclusions

Our results show that the distinctive pathological features of PTCs, including TILs, background CLT, female gender, psammoma bodies, and stromal calcification, are useful parameters for predicting PD-L1 or PD-1 expression.
Literature
1.
go back to reference Bai Y, Kakudo K, Li Y, et al. Subclassification of non-solid-type papillary thyroid carcinoma identification of high-risk group in common type. Cancer Sci. 2008;99:1908–15.PubMed Bai Y, Kakudo K, Li Y, et al. Subclassification of non-solid-type papillary thyroid carcinoma identification of high-risk group in common type. Cancer Sci. 2008;99:1908–15.PubMed
2.
go back to reference Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.CrossRef Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.CrossRef
3.
go back to reference Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed
5.
go back to reference Liu H, Li Z, Wang Y, et al. Immunohistochemical detection of the BRAF V600E mutation in melanoma patients with monoclonal antibody VE1. Pathol Int. 2014;64:601–6.PubMed Liu H, Li Z, Wang Y, et al. Immunohistochemical detection of the BRAF V600E mutation in melanoma patients with monoclonal antibody VE1. Pathol Int. 2014;64:601–6.PubMed
6.
go back to reference Sun J, Zhang J, Lu J, et al. Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. Int J Clin Exp Pathol. 2015;8:15072–8.PubMedPubMedCentral Sun J, Zhang J, Lu J, et al. Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. Int J Clin Exp Pathol. 2015;8:15072–8.PubMedPubMedCentral
7.
go back to reference Pyo JS, Sohn JH, Kang GBRAF. Immunohistochemistry Using Clone VE1 is Strongly Concordant with BRAF(V600E) Mutation Test in Papillary Thyroid Carcinoma. Endocr Pathol. 2015;26:211–7.CrossRefPubMed Pyo JS, Sohn JH, Kang GBRAF. Immunohistochemistry Using Clone VE1 is Strongly Concordant with BRAF(V600E) Mutation Test in Papillary Thyroid Carcinoma. Endocr Pathol. 2015;26:211–7.CrossRefPubMed
8.
go back to reference Ozaki O, Ito K, Kobayashi K, Toshima K, Iwasaki H, Yashiro T. Thyroid carcinoma in Graves' disease. World J Surg. 1990;14:437–40. discussion 40-1CrossRefPubMed Ozaki O, Ito K, Kobayashi K, Toshima K, Iwasaki H, Yashiro T. Thyroid carcinoma in Graves' disease. World J Surg. 1990;14:437–40. discussion 40-1CrossRefPubMed
9.
go back to reference Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. Int J Surg Pathol. 2002;10:141–6.CrossRefPubMed Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. Int J Surg Pathol. 2002;10:141–6.CrossRefPubMed
10.
go back to reference Jia M, Feng W, Kang S, et al. Evaluation of the efficacy and safety of anti-PD-1 and anti-PD-L1 antibody in the treatment of non-small cell lung cancer (NSCLC): a meta-analysis. J Thorac Dis. 2015;7:455–61.PubMedPubMedCentral Jia M, Feng W, Kang S, et al. Evaluation of the efficacy and safety of anti-PD-1 and anti-PD-L1 antibody in the treatment of non-small cell lung cancer (NSCLC): a meta-analysis. J Thorac Dis. 2015;7:455–61.PubMedPubMedCentral
11.
go back to reference Massari F, Santoni M, Ciccarese C, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41:114–21.CrossRefPubMed Massari F, Santoni M, Ciccarese C, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41:114–21.CrossRefPubMed
12.
go back to reference Zhang T, Xie J, Arai S, et al. The efficacy and safety of anti-PD-1/PD-L1 antibodies for treatment of advanced or refractory cancers: a meta-analysis. Oncotarget. 2016;7:73068–79.PubMedPubMedCentral Zhang T, Xie J, Arai S, et al. The efficacy and safety of anti-PD-1/PD-L1 antibodies for treatment of advanced or refractory cancers: a meta-analysis. Oncotarget. 2016;7:73068–79.PubMedPubMedCentral
13.
go back to reference Ilie M, Falk AT, Butori C, et al. PD-L1 expression in basaloid squamous cell lung carcinoma: Relationship to PD-1+ and CD8+ tumor-infiltrating T cells and outcome. Mod Pathol. 2016;29:1552–64.CrossRefPubMed Ilie M, Falk AT, Butori C, et al. PD-L1 expression in basaloid squamous cell lung carcinoma: Relationship to PD-1+ and CD8+ tumor-infiltrating T cells and outcome. Mod Pathol. 2016;29:1552–64.CrossRefPubMed
14.
go back to reference Leite KR, Reis ST, Junior JP, et al. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis. Diagn Pathol. 2015;10:189.CrossRefPubMedPubMedCentral Leite KR, Reis ST, Junior JP, et al. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis. Diagn Pathol. 2015;10:189.CrossRefPubMedPubMedCentral
15.
go back to reference Li Z, Lai Y, Sun L, et al. PD-L1 expression is associated with massive lymphocyte infiltration and histology in gastric cancer. Hum Pathol. 2016;55:182–9.CrossRefPubMed Li Z, Lai Y, Sun L, et al. PD-L1 expression is associated with massive lymphocyte infiltration and histology in gastric cancer. Hum Pathol. 2016;55:182–9.CrossRefPubMed
16.
go back to reference Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.CrossRefPubMedPubMedCentral Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.CrossRefPubMedPubMedCentral
17.
go back to reference Zuo H, Tang W, Yasuoka H, et al. A review of 227 cases of small papillary thyroid carcinoma. Eur J Surg Oncol. 2007;33:370–5.CrossRefPubMed Zuo H, Tang W, Yasuoka H, et al. A review of 227 cases of small papillary thyroid carcinoma. Eur J Surg Oncol. 2007;33:370–5.CrossRefPubMed
18.
go back to reference Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.CrossRefPubMed Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.CrossRefPubMed
19.
go back to reference Bai Y, Zhou G, Nakamura M, et al. Survival impact of psammoma body, stromal calcification, and bone formation in papillary thyroid carcinoma. Mod Pathol. 2009;22:887–94.CrossRefPubMed Bai Y, Zhou G, Nakamura M, et al. Survival impact of psammoma body, stromal calcification, and bone formation in papillary thyroid carcinoma. Mod Pathol. 2009;22:887–94.CrossRefPubMed
20.
go back to reference Mizukami Y, Michigishi T, Kawato M, et al. Chronic thyroiditis: thyroid function and histologic correlations in 601 cases. Hum Pathol. 1992;23:980–8.CrossRefPubMed Mizukami Y, Michigishi T, Kawato M, et al. Chronic thyroiditis: thyroid function and histologic correlations in 601 cases. Hum Pathol. 1992;23:980–8.CrossRefPubMed
21.
go back to reference Li Y, Zhou G, Ozaki T, et al. Distinct histopathological features of Hashimoto's thyroiditis with respect to IgG4-related disease. Mod Pathol. 2012;25:1086–97.CrossRefPubMed Li Y, Zhou G, Ozaki T, et al. Distinct histopathological features of Hashimoto's thyroiditis with respect to IgG4-related disease. Mod Pathol. 2012;25:1086–97.CrossRefPubMed
22.
go back to reference Koperek O, Kornauth C, Capper D, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012;36:844–50.CrossRefPubMed Koperek O, Kornauth C, Capper D, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012;36:844–50.CrossRefPubMed
23.
go back to reference Iwatani Y, Amino N, Mori H, et al. T lymphocyte subsets in autoimmunethyroid diseases and subacute thyroiditis detected with monoclonal antibodies. J Clin Endocrinol Metab. 1983;56:251–4.CrossRefPubMed Iwatani Y, Amino N, Mori H, et al. T lymphocyte subsets in autoimmunethyroid diseases and subacute thyroiditis detected with monoclonal antibodies. J Clin Endocrinol Metab. 1983;56:251–4.CrossRefPubMed
24.
go back to reference McIntosh RS, Watson PF, Weetman AP. Analysis of the T cell receptor V alpha repertoire in Hashimoto's thyroiditis: evidence for the restricted accumulation of CD8+ T cells in the absence of CD4+ T cell restriction. J Clin Endocrinol Metab. 1997;82:1140–6.PubMed McIntosh RS, Watson PF, Weetman AP. Analysis of the T cell receptor V alpha repertoire in Hashimoto's thyroiditis: evidence for the restricted accumulation of CD8+ T cells in the absence of CD4+ T cell restriction. J Clin Endocrinol Metab. 1997;82:1140–6.PubMed
25.
go back to reference McLeod DS, Cooper DS, Ladenson PW, et al. Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid. 2014;24:35–42.CrossRefPubMedPubMedCentral McLeod DS, Cooper DS, Ladenson PW, et al. Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid. 2014;24:35–42.CrossRefPubMedPubMedCentral
26.
go back to reference Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615–27.CrossRefPubMed Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615–27.CrossRefPubMed
28.
go back to reference Chowdhury S, Veyhl J, Jessa F, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7:32318–28.CrossRefPubMedPubMedCentral Chowdhury S, Veyhl J, Jessa F, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7:32318–28.CrossRefPubMedPubMedCentral
29.
go back to reference Johannessen JV, Sobrinho-Simoes M. The origin and significance of thyroid psammoma bodies. Lab Investig. 1980;43:287–96.PubMed Johannessen JV, Sobrinho-Simoes M. The origin and significance of thyroid psammoma bodies. Lab Investig. 1980;43:287–96.PubMed
30.
go back to reference Carcangiu ML, Zampi G, Pupi A, Castagnoli A, Rosai J. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer. 1985;55:805–28.CrossRefPubMed Carcangiu ML, Zampi G, Pupi A, Castagnoli A, Rosai J. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer. 1985;55:805–28.CrossRefPubMed
31.
go back to reference Clark CA, Gupta HB, Sareddy G, et al. Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Res. 2016;76:6964–74.CrossRefPubMed Clark CA, Gupta HB, Sareddy G, et al. Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Res. 2016;76:6964–74.CrossRefPubMed
32.
go back to reference Ahn S, Kim TH, Kim SW, et al. Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 2017;24:97–106.CrossRefPubMed Ahn S, Kim TH, Kim SW, et al. Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 2017;24:97–106.CrossRefPubMed
33.
go back to reference Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33:42–50.CrossRefPubMed Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33:42–50.CrossRefPubMed
34.
go back to reference Angell TE, Lechner MG, Jang JK, Correa AJ, LoPresti JS, Epstein ALBRAF. V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24:1385–93.CrossRefPubMedPubMedCentral Angell TE, Lechner MG, Jang JK, Correa AJ, LoPresti JS, Epstein ALBRAF. V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24:1385–93.CrossRefPubMedPubMedCentral
Metadata
Title
PD-L1 and PD-1 expression are correlated with distinctive clinicopathological features in papillary thyroid carcinoma
Authors
Yanhua Bai
Dongfeng Niu
Xiaozheng Huang
Ling Jia
Qiang Kang
Fangyuan Dou
Xinqiang Ji
Weicheng Xue
Yiqiang Liu
Zhongwu Li
Qin Feng
Dongmei Lin
Kennichi Kakudo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2017
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-017-0662-z

Other articles of this Issue 1/2017

Diagnostic Pathology 1/2017 Go to the issue