Skip to main content
Top
Published in: Diagnostic Pathology 1/2017

Open Access 01-12-2017 | Research

Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate

Authors: Zhaoxuan Ma, Stephen L. Shiao, Emi J. Yoshida, Steven Swartwood, Fangjin Huang, Michael E. Doche, Alice P. Chung, Beatrice S. Knudsen, Arkadiusz Gertych

Published in: Diagnostic Pathology | Issue 1/2017

Login to get access

Abstract

Background

Immune cell infiltrates (ICI) of tumors are scored by pathologists around tumor glands. To obtain a better understanding of the immune infiltrate, individual immune cell types, their activation states and location relative to tumor cells need to be determined. This process requires precise identification of the tumor area and enumeration of immune cell subtypes separately in the stroma and inside tumor nests. Such measurements can be accomplished by a multiplex format using immunohistochemistry (IHC).

Method

We developed a pipeline that combines immunohistochemistry (IHC) and digital image analysis. One slide was stained with pan-cytokeratin and CD45 and the other slide with CD8, CD4 and CD68. The tumor mask generated through pan-cytokeratin staining was transferred from one slide to the other using affine image co-registration. Bland-Altman plots and Pearson correlation were used to investigate differences between densities and counts of immune cell underneath the transferred versus manually annotated tumor masks. One-way ANOVA was used to compare the mask transfer error for tissues with solid and glandular tumor architecture.

Results

The overlap between manual and transferred tumor masks ranged from 20%–90% across all cases. The error of transferring the mask was 2- to 4-fold greater in tumor regions with glandular compared to solid growth pattern (p < 10−6). Analyzing data from a single slide, the Pearson correlation coefficients of cell type densities outside and inside tumor regions were highest for CD4 + T-cells (r = 0.8), CD8 + T-cells (r = 0.68) or CD68+ macrophages (r = 0.79). The correlation coefficient for CD45+ T- and B-cells was only 0.45. The transfer of the mask generated an error in the measurement of intra- and extra- tumoral CD68+, CD8+ or CD4+ counts (p < 10−10).

Conclusions

In summary, we developed a general method to integrate data from IHC stained slides into a single dataset. Because of the transfer error between slides, we recommend applying the antibody for demarcation of the tumor on the same slide as the ICI antibodies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.CrossRefPubMed Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.CrossRefPubMed
2.
go back to reference Dieci MV, Prat A, Tagliafico E, Pare L, Ficarra G, Bisagni G, et al. Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann Oncol. 2016;27(10):1867–73.CrossRefPubMed Dieci MV, Prat A, Tagliafico E, Pare L, Ficarra G, Bisagni G, et al. Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann Oncol. 2016;27(10):1867–73.CrossRefPubMed
3.
go back to reference Ingold Heppner B, Untch M, Denkert C, Pfitzner BM, Lederer B, Schmitt W, et al. Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in Neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res. 2016;22(23):5747–54.CrossRefPubMed Ingold Heppner B, Untch M, Denkert C, Pfitzner BM, Lederer B, Schmitt W, et al. Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in Neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res. 2016;22(23):5747–54.CrossRefPubMed
4.
go back to reference Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.CrossRefPubMed Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.CrossRefPubMed
5.
go back to reference Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.CrossRefPubMed Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.CrossRefPubMed
6.
go back to reference Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62.CrossRefPubMed Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62.CrossRefPubMed
7.
go back to reference Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with Lapatinib and Trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–54.CrossRefPubMedPubMedCentral Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with Lapatinib and Trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–54.CrossRefPubMedPubMedCentral
8.
go back to reference Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26(2):259–71.CrossRefPubMed Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26(2):259–71.CrossRefPubMed
9.
go back to reference Denkert C, Wienert S, Poterie A, Loibl S, Budczies J, Badve S, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod Pathol. 2016;29(10):1155–64.CrossRefPubMed Denkert C, Wienert S, Poterie A, Loibl S, Budczies J, Badve S, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod Pathol. 2016;29(10):1155–64.CrossRefPubMed
10.
go back to reference Liu S, Duan X, Xu L, Xin L, Cheng Y, Liu Q, et al. Optimal threshold for stromal tumor-infiltrating lymphocytes: its predictive and prognostic value in HER2-positive breast cancer treated with trastuzumab-based neoadjuvant chemotherapy. Breast Cancer Res Treat. 2015;154(2):239–49.CrossRefPubMed Liu S, Duan X, Xu L, Xin L, Cheng Y, Liu Q, et al. Optimal threshold for stromal tumor-infiltrating lymphocytes: its predictive and prognostic value in HER2-positive breast cancer treated with trastuzumab-based neoadjuvant chemotherapy. Breast Cancer Res Treat. 2015;154(2):239–49.CrossRefPubMed
11.
12.
go back to reference Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70(1):46–58.CrossRefPubMed Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70(1):46–58.CrossRefPubMed
13.
go back to reference Levenson RM, Borowsky AD, Angelo M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Investig. 2015;95(4):397–405.CrossRefPubMed Levenson RM, Borowsky AD, Angelo M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Investig. 2015;95(4):397–405.CrossRefPubMed
14.
go back to reference Feng Z, Puri S, Moudgil T, Wood W, Hoyt CC, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47.CrossRefPubMedPubMedCentral Feng Z, Puri S, Moudgil T, Wood W, Hoyt CC, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47.CrossRefPubMedPubMedCentral
15.
go back to reference Angell HK, Gray N, Womack C, Pritchard DI, Wilkinson RW, Cumberbatch M. Digital pattern recognition-based image analysis quantifies immune infiltrates in distinct tissue regions of colorectal cancer and identifies a metastatic phenotype. Br J Cancer. 2013;109(6):1618–24.CrossRefPubMedPubMedCentral Angell HK, Gray N, Womack C, Pritchard DI, Wilkinson RW, Cumberbatch M. Digital pattern recognition-based image analysis quantifies immune infiltrates in distinct tissue regions of colorectal cancer and identifies a metastatic phenotype. Br J Cancer. 2013;109(6):1618–24.CrossRefPubMedPubMedCentral
16.
go back to reference Degnim AC, Brahmbhatt RD, Radisky DC, Hoskin TL, Stallings-Mann M, Laudenschlager M, et al. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res Treat. 2014;144(3):539–49.CrossRefPubMedPubMedCentral Degnim AC, Brahmbhatt RD, Radisky DC, Hoskin TL, Stallings-Mann M, Laudenschlager M, et al. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res Treat. 2014;144(3):539–49.CrossRefPubMedPubMedCentral
17.
go back to reference Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P. Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem. 2001;49(9):1073–9.CrossRefPubMed Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P. Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem. 2001;49(9):1073–9.CrossRefPubMed
18.
go back to reference Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.CrossRefPubMedPubMedCentral Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.CrossRefPubMedPubMedCentral
19.
go back to reference Lopez C, Callau C, Bosch R, Korzynska A, Jaen J, Garcia-Rojo M, et al. Development of automated quantification methodologies of immunohistochemical markers to determine patterns of immune response in breast cancer: a retrospective cohort study. BMJ Open. 2014;4(8):e005643.CrossRefPubMedPubMedCentral Lopez C, Callau C, Bosch R, Korzynska A, Jaen J, Garcia-Rojo M, et al. Development of automated quantification methodologies of immunohistochemical markers to determine patterns of immune response in breast cancer: a retrospective cohort study. BMJ Open. 2014;4(8):e005643.CrossRefPubMedPubMedCentral
20.
go back to reference Vasaturo A, Di Blasio S, Verweij D, Blokx WA, van Krieken JH, de Vries IJ, et al. Multispectral imaging for highly accurate analysis of Tumor Infiltrating Lymphocytes in primary melanoma. Histopathology. 2016;70(4):643–49.CrossRefPubMed Vasaturo A, Di Blasio S, Verweij D, Blokx WA, van Krieken JH, de Vries IJ, et al. Multispectral imaging for highly accurate analysis of Tumor Infiltrating Lymphocytes in primary melanoma. Histopathology. 2016;70(4):643–49.CrossRefPubMed
21.
go back to reference Oguejiofor K, Hall J, Slater C, Betts G, Hall G, Slevin N, et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br J Cancer. 2015;113(6):886–93.CrossRefPubMedPubMedCentral Oguejiofor K, Hall J, Slater C, Betts G, Hall G, Slevin N, et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br J Cancer. 2015;113(6):886–93.CrossRefPubMedPubMedCentral
22.
go back to reference Garnelo M, Tan A, Her Z. Yeong J. Chen J, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut: Lim CJ; 2015. Garnelo M, Tan A, Her Z. Yeong J. Chen J, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut: Lim CJ; 2015.
23.
go back to reference Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed
24.
go back to reference Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.PubMed Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.PubMed
25.
go back to reference Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag. 2002;19(1):44–57.CrossRef Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag. 2002;19(1):44–57.CrossRef
26.
go back to reference Gertych A, Mohan S, Maclary S, Mohanty S, Wawrowsky K, Mirocha J, et al. Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis. Diagn Pathol. 2014;9:213.CrossRefPubMedPubMedCentral Gertych A, Mohan S, Maclary S, Mohanty S, Wawrowsky K, Mirocha J, et al. Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis. Diagn Pathol. 2014;9:213.CrossRefPubMedPubMedCentral
27.
go back to reference Zack GW, Rogers WE, Latt SA. Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem. 1977;25(7):741–53.CrossRefPubMed Zack GW, Rogers WE, Latt SA. Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem. 1977;25(7):741–53.CrossRefPubMed
28.
go back to reference Young IT. Image analysis and mathematical morphology, by J. Serra. Academic press, London, 1982, xviii + 610 p. $90.00. Cytometry. 1983;4(2):184–5.CrossRef Young IT. Image analysis and mathematical morphology, by J. Serra. Academic press, London, 1982, xviii + 610 p. $90.00. Cytometry. 1983;4(2):184–5.CrossRef
29.
go back to reference Nomizu K, Sasaki S. Affine Differential Geometry (New ed.). Melbourne: Cambridge University Press; 1994. Nomizu K, Sasaki S. Affine Differential Geometry (New ed.). Melbourne: Cambridge University Press; 1994.
30.
go back to reference Gertych A, Ing N, Ma Z, Fuchs TJ, Salman S, Mohanty S, et al. Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput Med Imaging Graph. 2015;46(Pt 2):197–208.CrossRefPubMedPubMedCentral Gertych A, Ing N, Ma Z, Fuchs TJ, Salman S, Mohanty S, et al. Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput Med Imaging Graph. 2015;46(Pt 2):197–208.CrossRefPubMedPubMedCentral
31.
go back to reference Pozner-Moulis S, Cregger M, Camp RL, Rimm DL. Antibody validation by quantitative analysis of protein expression using expression of met in breast cancer as a model. Lab Investig. 2007;87(3):251–60.CrossRefPubMed Pozner-Moulis S, Cregger M, Camp RL, Rimm DL. Antibody validation by quantitative analysis of protein expression using expression of met in breast cancer as a model. Lab Investig. 2007;87(3):251–60.CrossRefPubMed
32.
go back to reference Huang F, Ma Z, Pollan S, Yuan X, Swartwood S, Gertych A, et al. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. J Pathol Clin Res. 2016;2(4):210–22.CrossRefPubMedPubMedCentral Huang F, Ma Z, Pollan S, Yuan X, Swartwood S, Gertych A, et al. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. J Pathol Clin Res. 2016;2(4):210–22.CrossRefPubMedPubMedCentral
33.
go back to reference Ginter PS, Varma S, Liu YF, Shin SJ. The minimal carcinoma triple stain is superior to commercially available multiplex immunohistochemical stains: breast triple stain and LC/DC breast cocktail. Am J Clin Pathol. 2015;144(6):869–79.CrossRefPubMed Ginter PS, Varma S, Liu YF, Shin SJ. The minimal carcinoma triple stain is superior to commercially available multiplex immunohistochemical stains: breast triple stain and LC/DC breast cocktail. Am J Clin Pathol. 2015;144(6):869–79.CrossRefPubMed
34.
go back to reference Brown JR, Wimberly H, Lannin DR, Nixon C, Rimm DL, Bossuyt V. Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2014;20(23):5995–6005.CrossRefPubMedPubMedCentral Brown JR, Wimberly H, Lannin DR, Nixon C, Rimm DL, Bossuyt V. Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2014;20(23):5995–6005.CrossRefPubMedPubMedCentral
35.
go back to reference Di Palma S, Bodenmiller B. Unraveling cell populations in tumors by single-cell mass cytometry. Curr Opin Biotechnol. 2015;31:122–9.CrossRefPubMed Di Palma S, Bodenmiller B. Unraveling cell populations in tumors by single-cell mass cytometry. Curr Opin Biotechnol. 2015;31:122–9.CrossRefPubMed
Metadata
Title
Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate
Authors
Zhaoxuan Ma
Stephen L. Shiao
Emi J. Yoshida
Steven Swartwood
Fangjin Huang
Michael E. Doche
Alice P. Chung
Beatrice S. Knudsen
Arkadiusz Gertych
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2017
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-017-0658-8

Other articles of this Issue 1/2017

Diagnostic Pathology 1/2017 Go to the issue