Skip to main content
Top
Published in: Diagnostic Pathology 1/2017

Open Access 01-12-2017 | Research

Implication of overexpression of dishevelled-associated activator of morphogenesis 1 (Daam-1) for the pathogenesis of human Idiopathic Pulmonary Arterial Hypertension (IPAH)

Authors: Shun Yanai, Megumi Wakayama, Haruo Nakayama, Minoru Shinozaki, Hisayuki Tsukuma, Naobumi Tochigi, Tetsuo Nemoto, Tsutomu Saji, Kazutoshi Shibuya

Published in: Diagnostic Pathology | Issue 1/2017

Login to get access

Abstract

Background

Idiopathic pulmonary arterial hypertension (IPAH) is a rare, fatal disease of unknown pathogenesis. Evidence from our recent study suggests that IPAH pathogenesis is related to upregulation of the Wnt/planar cell polarity (Wnt/PCP) pathway. We used microscopic observation and immunohistochemical techniques to identify expression patterns of cascading proteins—namely Wnt-11, dishevelled-2 (Dvl-2), and dishevelled-associated activator of morphogenesis 1 (Daam-1)—in pulmonary arteries.

Methods

We analyzed sections of formalin-fixed and paraffin-embedded autopsied lung tissues obtained from 9 IPAH cases, 7 associated pulmonary arterial hypertension cases, and 16 age-matched controls without pulmonary arterial abnormalities. Results of microscopic observation were analyzed in relation to the cellular components and size of pulmonary arteries.

Results

Varying rates of positive reactivity to Dvl-2 and Daam-1 were confirmed in all cellular components of pulmonary arteries, namely, endothelial cells, myofibroblasts, and medial smooth muscle cells. In contrast, none of these components was reactive to Wnt-11. No specific expression patterns were observed for endothelial cells or myofibroblasts under any experimental conditions. However, marked expression of Dvl-2 and Daam-1 was confirmed in smooth muscle cells. In addition, Dvl-2 was depleted while Daam-1 expression was elevated in IPAH, in contrast with specimens from associated pulmonary arterial hypertension cases and controls.

Conclusions

High Daam-1 expression may upregulate the Wnt/PCP pathway and cause IPAH.
Literature
1.
go back to reference Fishman AP. Primary pulmonary arterial hypertension: a lookback. J Am Coll Cardiol. 2004;43:2S–4S.CrossRefPubMed Fishman AP. Primary pulmonary arterial hypertension: a lookback. J Am Coll Cardiol. 2004;43:2S–4S.CrossRefPubMed
3.
go back to reference Saji T. Update on pediatric pulmonary arterial hypertension: differences and similarities to adult disease. Circ J. 2013;77:2639–50.CrossRefPubMed Saji T. Update on pediatric pulmonary arterial hypertension: differences and similarities to adult disease. Circ J. 2013;77:2639–50.CrossRefPubMed
4.
go back to reference Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.CrossRefPubMed Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.CrossRefPubMed
5.
6.
go back to reference Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol. 2004;43:33S–9S.CrossRefPubMed Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol. 2004;43:33S–9S.CrossRefPubMed
7.
go back to reference Ochiai E, Kamei K, Watanabe A, et al. Ihalation of Stachybotrys chartarum causes pulmonary arterial hypertension in mice. Int J Exp Path. 2008;89:201–8.CrossRef Ochiai E, Kamei K, Watanabe A, et al. Ihalation of Stachybotrys chartarum causes pulmonary arterial hypertension in mice. Int J Exp Path. 2008;89:201–8.CrossRef
8.
go back to reference Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–32.CrossRefPubMed Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–32.CrossRefPubMed
9.
go back to reference Shimodaira K, Okubo Y, Ochiai E, et al. Gene expression analysis of a murine model with pulmonary vascular remodeling compared to end-stage IPAH lungs. Respir Res. 2012;13:103.CrossRefPubMedPubMedCentral Shimodaira K, Okubo Y, Ochiai E, et al. Gene expression analysis of a murine model with pulmonary vascular remodeling compared to end-stage IPAH lungs. Respir Res. 2012;13:103.CrossRefPubMedPubMedCentral
10.
go back to reference Laumanns IP, Fink L, Wilhelm J, et al. The noncanonical Wnt pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Moll Biol. 2009;40:683–91.CrossRef Laumanns IP, Fink L, Wilhelm J, et al. The noncanonical Wnt pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Moll Biol. 2009;40:683–91.CrossRef
12.
go back to reference Nichirei biosciences. Instructions: Histofine® Simple Stain MAX PO (MULTI). April, 2005. Nichirei biosciences. Instructions: Histofine® Simple Stain MAX PO (MULTI). April, 2005.
13.
go back to reference Brenner O. Pathology of the vessels of the pulmonary circulation. Arch Int M. 1935;56:211–37.CrossRef Brenner O. Pathology of the vessels of the pulmonary circulation. Arch Int M. 1935;56:211–37.CrossRef
14.
go back to reference Dresdale DT, Michtom RJ, Schultz M. Recent studies in primary pulmonary hypertension including pharmacodynamics observations on pulmonary vascular resistance. Bull N Y Aca Med. 1954;30:195–207. Dresdale DT, Michtom RJ, Schultz M. Recent studies in primary pulmonary hypertension including pharmacodynamics observations on pulmonary vascular resistance. Bull N Y Aca Med. 1954;30:195–207.
15.
go back to reference Inglesby TV, Singer JW, Gordon DS. Abnormal fibrinolysis in familial pulmonary hypertension. Am J Med. 1973;55:5–14.CrossRefPubMed Inglesby TV, Singer JW, Gordon DS. Abnormal fibrinolysis in familial pulmonary hypertension. Am J Med. 1973;55:5–14.CrossRefPubMed
16.
go back to reference Elliott CG. Genetics of pulmonary arterial hypertension: current and future implications. Semin Respir Crit Care Med. 2005;26:365–71.CrossRefPubMed Elliott CG. Genetics of pulmonary arterial hypertension: current and future implications. Semin Respir Crit Care Med. 2005;26:365–71.CrossRefPubMed
17.
go back to reference Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.CrossRefPubMed Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.CrossRefPubMed
19.
go back to reference Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor typeβ1. Hum Mol Genet. 1999;8:93–7.CrossRefPubMed Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor typeβ1. Hum Mol Genet. 1999;8:93–7.CrossRefPubMed
20.
go back to reference Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation. 2002;105:1672–8.CrossRefPubMed Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation. 2002;105:1672–8.CrossRefPubMed
21.
go back to reference Newman JH, Phillips JA, Loyd JE. Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med. 2008;148:278–83.CrossRefPubMed Newman JH, Phillips JA, Loyd JE. Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med. 2008;148:278–83.CrossRefPubMed
22.
go back to reference Hong K-H, Lee YJ, Lee E, et al. Genetic ablation of the bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 2008;118:722–30.CrossRefPubMedPubMedCentral Hong K-H, Lee YJ, Lee E, et al. Genetic ablation of the bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 2008;118:722–30.CrossRefPubMedPubMedCentral
23.
go back to reference Gilbane AJ, Derrett-Smith E, Trinder SL, Good RB, Pearce A. Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-β-dependent mouse model of pulmonary hypertension and in systemic sclerosis. Am J Repir Crit Care Med. 2015;191:665–77.CrossRef Gilbane AJ, Derrett-Smith E, Trinder SL, Good RB, Pearce A. Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-β-dependent mouse model of pulmonary hypertension and in systemic sclerosis. Am J Repir Crit Care Med. 2015;191:665–77.CrossRef
24.
go back to reference Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signaling. Respirology. 2016;21:526–32.CrossRefPubMed Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signaling. Respirology. 2016;21:526–32.CrossRefPubMed
25.
go back to reference Croft WA, Jarvis BB, Yatawara CS. Airborne outbreak of trichothecene toxicosis. Atmos Environ. 1986;20:549–52.CrossRef Croft WA, Jarvis BB, Yatawara CS. Airborne outbreak of trichothecene toxicosis. Atmos Environ. 1986;20:549–52.CrossRef
26.
go back to reference Etzel RA, Montana E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med. 1998;152:757–62.CrossRefPubMed Etzel RA, Montana E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med. 1998;152:757–62.CrossRefPubMed
27.
go back to reference Ochiai E, Kamei K, Hiroshima K, et al. The pathogenicity of Stachybotrys chartarum. Jpn J Med Mycol. 2005;46:109–17.CrossRef Ochiai E, Kamei K, Hiroshima K, et al. The pathogenicity of Stachybotrys chartarum. Jpn J Med Mycol. 2005;46:109–17.CrossRef
28.
go back to reference Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci. 2008;104:4–26.CrossRefPubMed Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci. 2008;104:4–26.CrossRefPubMed
29.
go back to reference Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.CrossRefPubMed Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.CrossRefPubMed
30.
go back to reference Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol. 2001;281:C571–8.PubMed Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol. 2001;281:C571–8.PubMed
31.
go back to reference Reynolds A, Wharton N, Parris A, et al. Canonical Wnt signals with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut. 2014;63:610–21.CrossRefPubMed Reynolds A, Wharton N, Parris A, et al. Canonical Wnt signals with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut. 2014;63:610–21.CrossRefPubMed
32.
go back to reference Yang S, Cho Y-J, Jin L, et al. An epigenetic auto-feedback loop regulates TGF-β type II receptor expression and function in NSCLC. Oncotarget. 2015;6:33237–52.PubMedPubMedCentral Yang S, Cho Y-J, Jin L, et al. An epigenetic auto-feedback loop regulates TGF-β type II receptor expression and function in NSCLC. Oncotarget. 2015;6:33237–52.PubMedPubMedCentral
33.
go back to reference Fagan KA, Oka M, Bauer NR, et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287:L656–64.CrossRefPubMed Fagan KA, Oka M, Bauer NR, et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287:L656–64.CrossRefPubMed
34.
go back to reference Nagaoka T, Morio Y, Casanova N, et al. Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2004;287:L665–72.CrossRefPubMed Nagaoka T, Morio Y, Casanova N, et al. Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2004;287:L665–72.CrossRefPubMed
35.
go back to reference Fukumoto Y, Yamada N, Matsubara H, et al. Double-blind, placebo controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension: a pilot efficacy trial. Circ J. 2013;77:2619–25.CrossRefPubMed Fukumoto Y, Yamada N, Matsubara H, et al. Double-blind, placebo controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension: a pilot efficacy trial. Circ J. 2013;77:2619–25.CrossRefPubMed
36.
go back to reference Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease: a description of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation. 1958;18:533–47.CrossRefPubMed Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease: a description of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation. 1958;18:533–47.CrossRefPubMed
37.
go back to reference Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.CrossRefPubMed Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.CrossRefPubMed
38.
go back to reference Komiya Y, Habas R. Wnt signal transduction pathways. Oranogenesis. 2008;4:68–75.CrossRef Komiya Y, Habas R. Wnt signal transduction pathways. Oranogenesis. 2008;4:68–75.CrossRef
39.
go back to reference Wang Y. Wnt/planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther. 2009;8:2103–9.CrossRefPubMed Wang Y. Wnt/planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther. 2009;8:2103–9.CrossRefPubMed
40.
go back to reference Dejana E. The role of Wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010;107:943–52.CrossRefPubMed Dejana E. The role of Wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010;107:943–52.CrossRefPubMed
41.
go back to reference Wu G, Ge J, Huang X, Hua Y, Mu D. Planar cell polarity signaling pathway in congenital heart diseases. J Biomed Biotechnol. 2011;2011:589414.PubMedPubMedCentral Wu G, Ge J, Huang X, Hua Y, Mu D. Planar cell polarity signaling pathway in congenital heart diseases. J Biomed Biotechnol. 2011;2011:589414.PubMedPubMedCentral
42.
go back to reference Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell. 2001;107:843–54.CrossRefPubMed Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell. 2001;107:843–54.CrossRefPubMed
45.
go back to reference Hamblet NS, Lijam N, Ruiz-Lozano P, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development. 2002;129:5827–38.CrossRefPubMed Hamblet NS, Lijam N, Ruiz-Lozano P, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development. 2002;129:5827–38.CrossRefPubMed
46.
go back to reference Etheridge SL, Ray S, Li S, et al. Murine dishevelled 3 functions in redundant pathways with 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008;4:e1000259.CrossRefPubMedPubMedCentral Etheridge SL, Ray S, Li S, et al. Murine dishevelled 3 functions in redundant pathways with 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008;4:e1000259.CrossRefPubMedPubMedCentral
47.
go back to reference Li D, Hallet MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development. 2011;138:303–15.CrossRefPubMedPubMedCentral Li D, Hallet MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development. 2011;138:303–15.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Heilig R, Eckenberg R, Petit JL, et al. The DNA sequence and analysis of human chromosome 14. Nature. 2003;421:601–7.CrossRefPubMed Heilig R, Eckenberg R, Petit JL, et al. The DNA sequence and analysis of human chromosome 14. Nature. 2003;421:601–7.CrossRefPubMed
50.
go back to reference Liu W, Sato A, Khadka D, et al. Mechanism of activation of the formin protein daam1. Proc Natl Acad Sci U S A. 2008;105:210–5.CrossRefPubMed Liu W, Sato A, Khadka D, et al. Mechanism of activation of the formin protein daam1. Proc Natl Acad Sci U S A. 2008;105:210–5.CrossRefPubMed
Metadata
Title
Implication of overexpression of dishevelled-associated activator of morphogenesis 1 (Daam-1) for the pathogenesis of human Idiopathic Pulmonary Arterial Hypertension (IPAH)
Authors
Shun Yanai
Megumi Wakayama
Haruo Nakayama
Minoru Shinozaki
Hisayuki Tsukuma
Naobumi Tochigi
Tetsuo Nemoto
Tsutomu Saji
Kazutoshi Shibuya
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2017
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-017-0614-7

Other articles of this Issue 1/2017

Diagnostic Pathology 1/2017 Go to the issue