Skip to main content
Top
Published in: Diagnostic Pathology 1/2016

Open Access 01-12-2016 | Research

Diagnostic use of fluorescence in situ hybridization in expert review in a phase 2 study of trabectedin monotherapy in patients with advanced, translocation-related sarcoma

Authors: Shintaro Sugita, Hiroko Asanuma, Tadashi Hasegawa

Published in: Diagnostic Pathology | Issue 1/2016

Login to get access

Abstract

Background

Fluorescence in situ hybridization (FISH) is one of the most powerful genetic analysis tools for pathological diagnoses. FISH can detect various genetic abnormalities including gene translocation that was specifically found in translocation-related sarcomas (TRSs). Here, we report the use of FISH in expert review in a phase 2 study of trabectedin monotherapy for patients with advanced TRS.

Methods

TRS patients (n = 76) were enrolled in the trial at 12 study sites after pathological diagnoses were made, including morphological examination with or without evidence of translocation by genetic testing. Following histological reviews of the representative specimens at the study sites, we performed immunohistochemistry using the appropriate antibodies and FISH for genetic confirmation of the tumor types in the expert review.

Results

Among the 76 TRS cases, no split signal for SS18 probe was detected by FISH in three synovial sarcoma cases that were diagnosed at the study sites. Malignant peripheral nerve sheath tumor (MPNST) was diagnosed in two cases and sarcomatoid carcinoma in one. One of the cases was a small round cell variant of MPNST. After excluding these three cases, we assessed the other 73. There were no split signals detected in 7 of the 73 cases by FISH analysis, due to decalcification and hyperfixation procedures. Excluding these seven cases, FISH detected translocations in 95 % (63/66) of the study cases with a high sensitivity.

Conclusions

The diagnosis of TRS by FISH was highly sensitive and enabled genetic confirmation of the pathological diagnoses. We strongly recommend FISH as a confirmatory diagnostic test for TRS, which would enable the selection of patients with TRS in whom trabectedin is expected to be effective.
This study was done in part that registered with Japan Pharmaceutical Information Center, number JapicCTI-121850.
Literature
1.
go back to reference Mertens F, Antonescu CR, Hohenberger P, Ladanyi M, Modena P, D'Incalci M, et al. Translocation-related sarcomas. Semin Oncol. 2009;36:312–23.CrossRefPubMed Mertens F, Antonescu CR, Hohenberger P, Ladanyi M, Modena P, D'Incalci M, et al. Translocation-related sarcomas. Semin Oncol. 2009;36:312–23.CrossRefPubMed
2.
go back to reference Miura Y, Keira Y, Ogino J, Nakanishi K, Noguchi H, Inoue T, et al. Detection of specific genetic abnormalities by fluorescence in situ hybridization in soft tissue tumors. Pathol Int. 2012;62:16–27.CrossRefPubMed Miura Y, Keira Y, Ogino J, Nakanishi K, Noguchi H, Inoue T, et al. Detection of specific genetic abnormalities by fluorescence in situ hybridization in soft tissue tumors. Pathol Int. 2012;62:16–27.CrossRefPubMed
3.
go back to reference Kawai A, Araki N, Sugiura H, Ueda T, Yonemoto T, Takahashi M, et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 2015;16:406–16.CrossRefPubMed Kawai A, Araki N, Sugiura H, Ueda T, Yonemoto T, Takahashi M, et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 2015;16:406–16.CrossRefPubMed
4.
go back to reference D'Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther. 2010;9:2157–63.CrossRefPubMed D'Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther. 2010;9:2157–63.CrossRefPubMed
5.
go back to reference Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, Tavecchio M, et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol Cancer Ther. 2009;8:449–57.CrossRefPubMed Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, Tavecchio M, et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol Cancer Ther. 2009;8:449–57.CrossRefPubMed
6.
go back to reference Grosso F, Jones RL, Demetri GD, Judson IR, Blay JY, Le Cesne A, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 2007;8:595–602.CrossRefPubMed Grosso F, Jones RL, Demetri GD, Judson IR, Blay JY, Le Cesne A, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 2007;8:595–602.CrossRefPubMed
7.
go back to reference Le Cesne A, Cresta S, Maki RG, Blay JY, Verweij J, Poveda A, et al. A retrospective analysis of antitumour activity with trabectedin in translocation-related sarcomas. Eur J Cancer. 2012;48:3036–44.CrossRefPubMed Le Cesne A, Cresta S, Maki RG, Blay JY, Verweij J, Poveda A, et al. A retrospective analysis of antitumour activity with trabectedin in translocation-related sarcomas. Eur J Cancer. 2012;48:3036–44.CrossRefPubMed
8.
go back to reference Jo VY, Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol. 2015;39:73–82.CrossRef Jo VY, Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol. 2015;39:73–82.CrossRef
9.
go back to reference Fanburg-Smith JC, Majidi M, Miettinen M. Keratin expression in schwannoma; a study of 115 retroperitoneal and 22 peripheral schwannomas. Mod Pathol. 2006;19:115–21.CrossRefPubMed Fanburg-Smith JC, Majidi M, Miettinen M. Keratin expression in schwannoma; a study of 115 retroperitoneal and 22 peripheral schwannomas. Mod Pathol. 2006;19:115–21.CrossRefPubMed
10.
go back to reference Abe S, Imamura T, Park P, Nakano H, Okita H, Hata J, et al. Small round-cell type of malignant peripheral nerve sheath tumor. Mod Pathol. 1998;11:747–53.PubMed Abe S, Imamura T, Park P, Nakano H, Okita H, Hata J, et al. Small round-cell type of malignant peripheral nerve sheath tumor. Mod Pathol. 1998;11:747–53.PubMed
11.
go back to reference Shintaku M, Nakade M, Hirose T. Malignant peripheral nerve sheath tumor of small round cell type with pleomorphic spindle cell sarcomatous areas. Pathol Int. 2003;53:478–82.CrossRefPubMed Shintaku M, Nakade M, Hirose T. Malignant peripheral nerve sheath tumor of small round cell type with pleomorphic spindle cell sarcomatous areas. Pathol Int. 2003;53:478–82.CrossRefPubMed
12.
go back to reference Miettinen M, Limon J, Niezabitowski A, Lasota J. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch. 2000;437:275–83.CrossRefPubMed Miettinen M, Limon J, Niezabitowski A, Lasota J. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch. 2000;437:275–83.CrossRefPubMed
13.
go back to reference Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18) (SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26:1434–40.CrossRefPubMed Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18) (SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26:1434–40.CrossRefPubMed
14.
go back to reference Nakayama R, Miura Y, Ogino J, Susa M, Watanabe I, Horiuchi K, et al. Detection of HEY1-NCOA2 fusion by fluorescence in-situ hybridization in formalin-fixed paraffin-embedded tissues as a possible diagnostic tool for mesenchymal chondrosarcoma. Pathol Int. 2012;62:823–6.CrossRefPubMed Nakayama R, Miura Y, Ogino J, Susa M, Watanabe I, Horiuchi K, et al. Detection of HEY1-NCOA2 fusion by fluorescence in-situ hybridization in formalin-fixed paraffin-embedded tissues as a possible diagnostic tool for mesenchymal chondrosarcoma. Pathol Int. 2012;62:823–6.CrossRefPubMed
Metadata
Title
Diagnostic use of fluorescence in situ hybridization in expert review in a phase 2 study of trabectedin monotherapy in patients with advanced, translocation-related sarcoma
Authors
Shintaro Sugita
Hiroko Asanuma
Tadashi Hasegawa
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2016
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-016-0486-2

Other articles of this Issue 1/2016

Diagnostic Pathology 1/2016 Go to the issue