Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

miR-449a targets Flot2 and inhibits gastric cancer invasion by inhibiting TGF-β-mediated EMT

Authors: Qian Li, Jie Peng, Xinhua Li, Aimin Leng, Ting Liu

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Flot2, a highly conserved protein of the SPFH domain containing proteins family, has recently been identified as oncogene to be involved in the tumorigenesis and metastasis of several cancers including gastric cancer. However, the underlying molecular mechanism of Flot2 in gastric cancer (GC) is largely unknown.

Methods

qRT-PCR and western blot was performed to detect miR-449a and Flot2 expression in GC cell lines and Normal human gastric epithelial cells. Then, luciferase reporter assay was used to elucidate whether Flot2 is a target gene of miR-449a. Finally, the roles and mechanism of miR-449a in regulation of tumor invasion were further investigated.

Results

In this study, miR-449a expression was downregulated and Flot2 was upregulated in all GC cell lines as compared with that in GES-1. luciferase reporter assay identified Flot2 as a novel direct target of miR-449a. miR-449a regulated GC cell invasion by suppressing Flot2 expression. Expression analysis of a set of epithelial-mesenchymal transition (EMT) markers showed that miR-449a reduced the expression of mesenchymal markers (vimentin and N-cadherin) and induced the expression of epithelial marker (E-cadherin), which was consistent with silenced Flot2. Moreover, Flot2 is necessary for TGF-β-induced EMT in GC cells.

Conclusions

Our results demonstrated that miR-449a suppressed Flot2 expression results in decreased cell invasion through repressing TGF-β-mediated-EMT, and provides a new theoretical basis to further investigate miR-449a-regulated Flot2 as a potential biomarker and a promising approach for GC treatment.
Literature
2.
go back to reference Khatami F, Karbakhsh M. Socioeconomic position and incidence of gastric cancer: a systematic review and meta-analysis. J Epidemiol Community Health. 2014. doi:10.1136/jech-2013-203784. Khatami F, Karbakhsh M. Socioeconomic position and incidence of gastric cancer: a systematic review and meta-analysis. J Epidemiol Community Health. 2014. doi:10.​1136/​jech-2013-203784.
8.
go back to reference Wang YL, Yao WJ, Guo L, Xi HF, Li SY, Wang ZM. Expression of flotillin-2 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. Int J Clin Exp Pathol. 2015;8(1):601–7.PubMedCentralPubMed Wang YL, Yao WJ, Guo L, Xi HF, Li SY, Wang ZM. Expression of flotillin-2 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. Int J Clin Exp Pathol. 2015;8(1):601–7.PubMedCentralPubMed
9.
go back to reference Rickman DS, Millon R, De Reynies A, Thomas E, Wasylyk C, Muller D, et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. Oncogene. 2008;27(51):6607–22. doi:10.1038/onc.2008.251.CrossRefPubMed Rickman DS, Millon R, De Reynies A, Thomas E, Wasylyk C, Muller D, et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. Oncogene. 2008;27(51):6607–22. doi:10.​1038/​onc.​2008.​251.CrossRefPubMed
11.
go back to reference Liu Y, Lin L, Huang Z, Ji B, Mei S, Lin Y, et al. High expression of flotillin-2 is associated with poor clinical survival in cervical carcinoma. Int J Clin Exp Pathol. 2015;8(1):622–8.PubMedCentralPubMed Liu Y, Lin L, Huang Z, Ji B, Mei S, Lin Y, et al. High expression of flotillin-2 is associated with poor clinical survival in cervical carcinoma. Int J Clin Exp Pathol. 2015;8(1):622–8.PubMedCentralPubMed
15.
16.
go back to reference Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu YP, et al. miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep. 2014;31(4):1715–22. doi:10.3892/or.2014.3052.PubMed Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu YP, et al. miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep. 2014;31(4):1715–22. doi:10.​3892/​or.​2014.​3052.PubMed
17.
go back to reference Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, et al. MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 2015;6:e1623. doi:10.1038/cddis.2014.573.CrossRefPubMed Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, et al. MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 2015;6:e1623. doi:10.​1038/​cddis.​2014.​573.CrossRefPubMed
19.
go back to reference Li X, Li H, Zhang R, Liu J, Liu J. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42. doi:10.1159/000374010.CrossRefPubMed Li X, Li H, Zhang R, Liu J, Liu J. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42. doi:10.​1159/​000374010.CrossRefPubMed
22.
go back to reference Zhao L, Lin L, Pan C, Shi M, Liao Y, Bin J, et al. Flotillin-2 promotes nasopharyngeal carcinoma metastasis and is necessary for the epithelial-mesenchymal transition induced by transforming growth factor-beta. Oncotarget. 2015;6:9781–93.PubMedCentralCrossRefPubMed Zhao L, Lin L, Pan C, Shi M, Liao Y, Bin J, et al. Flotillin-2 promotes nasopharyngeal carcinoma metastasis and is necessary for the epithelial-mesenchymal transition induced by transforming growth factor-beta. Oncotarget. 2015;6:9781–93.PubMedCentralCrossRefPubMed
28.
go back to reference Deng J, Lei W, Xiang X, Zhang L, Yu F, Chen J et al. MicroRNA-506 inhibits gastric cancer proliferation and invasion by directly targeting Yap1. Tumour Biol. 2015. doi:10.1007/s13277-015-3364-8. Deng J, Lei W, Xiang X, Zhang L, Yu F, Chen J et al. MicroRNA-506 inhibits gastric cancer proliferation and invasion by directly targeting Yap1. Tumour Biol. 2015. doi:10.​1007/​s13277-015-3364-8.
29.
Metadata
Title
miR-449a targets Flot2 and inhibits gastric cancer invasion by inhibiting TGF-β-mediated EMT
Authors
Qian Li
Jie Peng
Xinhua Li
Aimin Leng
Ting Liu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0435-5

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue