Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

Immune microenvironment as a factor of breast cancer progression

Authors: Anatolii Romaniuk, Mykola Lуndіn

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

The rate of progression of the disease depends on various factors and the tumor microenvironment takes not the last place among them. One part of researchers argues that the presence of tumor-infiltrating leukocytes serves as a favorable marker of the disease. There exists a completely different point of view on the matter.
The investigation of the effects of the inflammatory infiltration on the course of breast cancer process.

Methods

We found a pronounced inflammatory infiltration in the tumor microenvironment in 24 cases. Nineteen cases of IDC without inflammatory infiltration were used as a control group. Immunohistochemical reaction showed expression of ERα, PR, HER2/neu, E-cadherin, Hsp90α, Bcl-2, CD3, CD79α, S100 and Myeloperoxidase receptors. Mathematical calculations were done using Microsoft Excel 2010 with 12.0.5 Attestat option.

Results

We have determined five variants of immune microenvironment: interstitial, trabecular, nodular, diffuse and mixed. We have established a direct correlation between the expression of ERα and PR and indirect correlation between the receptors of steroid hormones and HER2/neo in both groups of breast cancer. HER2/neo positive tumors in 100% of cases were accompanied by the presence of heat shock proteins. There was a combination of Bcl-2 presence with the steroid receptors expression in 90 % of cases. There was found the indirect correlation between the presence of B lymphocytes and expression of steroid receptors.

Conclusions

The presence of B lymphocytes in an inflammatory infiltrate leads to the disappearance of estrogen receptors and progesterone receptors. It provokes the accumulation of Hsp90 in a cell. It contributes to the stabilization of HER2/neu receptors and most proteins that promote tumor progression.

Virtual slides

Literature
2.
go back to reference Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006;58(4):773–81.PubMedCrossRef Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006;58(4):773–81.PubMedCrossRef
3.
go back to reference Zagouri F, Sergentanis TN, Nonni A, Papadimitriou CA, Michalopoulos NV, Domeyer P, et al. Hsp90 in the continuum of breast ductal carcinogenesis: Evaluation in precursors, preinvasive and ductal carcinoma lesions. BMC Cancer. 2010;10:353–60.PubMedCentralPubMedCrossRef Zagouri F, Sergentanis TN, Nonni A, Papadimitriou CA, Michalopoulos NV, Domeyer P, et al. Hsp90 in the continuum of breast ductal carcinogenesis: Evaluation in precursors, preinvasive and ductal carcinoma lesions. BMC Cancer. 2010;10:353–60.PubMedCentralPubMedCrossRef
4.
go back to reference Gadkar-Sable S, Shah C, Rosario G, Sachdeva G, Puri C. Progesterone receptors: various forms and functions in reproductive tissues. Front Biosci. 2005;10:2118–30.PubMedCrossRef Gadkar-Sable S, Shah C, Rosario G, Sachdeva G, Puri C. Progesterone receptors: various forms and functions in reproductive tissues. Front Biosci. 2005;10:2118–30.PubMedCrossRef
5.
go back to reference Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;25(23):3525–33. Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;25(23):3525–33.
6.
go back to reference Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104(1):120–7.PubMedCentralPubMedCrossRef Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104(1):120–7.PubMedCentralPubMedCrossRef
7.
go back to reference Mohammed ZM, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107(5):864–73.PubMedCentralPubMedCrossRef Mohammed ZM, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107(5):864–73.PubMedCentralPubMedCrossRef
8.
go back to reference Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, et al. Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res. 2009;69(21):8420–8.PubMedCrossRef Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, et al. Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res. 2009;69(21):8420–8.PubMedCrossRef
9.
go back to reference Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15(17):1949–55.PubMedCrossRef Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15(17):1949–55.PubMedCrossRef
10.
go back to reference Schmidt C. Immune system’s Toll-like receptors have good opportunity for cancer treatment. J Nat Cancer Inst. 2006;98:574–5.PubMedCrossRef Schmidt C. Immune system’s Toll-like receptors have good opportunity for cancer treatment. J Nat Cancer Inst. 2006;98:574–5.PubMedCrossRef
11.
go back to reference Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2011;109(8):2796–801.PubMedCentralPubMedCrossRef Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2011;109(8):2796–801.PubMedCentralPubMedCrossRef
12.
go back to reference Sas L, Lardon F, Vermeulen PB, Hauspy J, Dam PV, Pauwels P, et al. The interaction between ER and NF-κB in resistance to endocrine therapy. Breast Cancer Res. 2012;14:212–20.PubMedCentralPubMedCrossRef Sas L, Lardon F, Vermeulen PB, Hauspy J, Dam PV, Pauwels P, et al. The interaction between ER and NF-κB in resistance to endocrine therapy. Breast Cancer Res. 2012;14:212–20.PubMedCentralPubMedCrossRef
13.
go back to reference Belguise K, Sonenshein GE. PKCθ promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis. J Clin Invest. 2007;117:4009–21.PubMedCentralPubMed Belguise K, Sonenshein GE. PKCθ promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis. J Clin Invest. 2007;117:4009–21.PubMedCentralPubMed
14.
go back to reference Reijm EA, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Gelder ME, et al. Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Res Treat. 2011;125:387–94.PubMedCrossRef Reijm EA, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Gelder ME, et al. Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Res Treat. 2011;125:387–94.PubMedCrossRef
15.
go back to reference Wang X, Belguise K, O’Neill CF, Sánchez-Morgan N, Romagnoli M, Eddy SF, et al. RelB NF-κB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol. 2009;29:3832–4.PubMedCentralPubMedCrossRef Wang X, Belguise K, O’Neill CF, Sánchez-Morgan N, Romagnoli M, Eddy SF, et al. RelB NF-κB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol. 2009;29:3832–4.PubMedCentralPubMedCrossRef
16.
go back to reference Orange JS, Levy O, Geha RS. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappaB activation. Immunol Rev. 2005;203:21–37.PubMedCrossRef Orange JS, Levy O, Geha RS. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappaB activation. Immunol Rev. 2005;203:21–37.PubMedCrossRef
17.
go back to reference Werner AB, de Vries E, Tait SW, Bontjer I, Borst J. Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem. 2002;277(25):22781–8.PubMedCrossRef Werner AB, de Vries E, Tait SW, Bontjer I, Borst J. Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem. 2002;277(25):22781–8.PubMedCrossRef
20.
go back to reference Berezowska S, Novotny A, Bauer K, Feuchtinger A, Slotta-Huspenina J, Becker K, et al. Association between HSP90 and Her2 in Gastric and Gastroesophageal Carcinomas. PLoS One. 2013;8(7):37–45.CrossRef Berezowska S, Novotny A, Bauer K, Feuchtinger A, Slotta-Huspenina J, Becker K, et al. Association between HSP90 and Her2 in Gastric and Gastroesophageal Carcinomas. PLoS One. 2013;8(7):37–45.CrossRef
21.
go back to reference Lang SA, Klein D, Moser C, Gaumann A, Glockzin G. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007;6:1123–32.PubMedCrossRef Lang SA, Klein D, Moser C, Gaumann A, Glockzin G. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007;6:1123–32.PubMedCrossRef
22.
go back to reference Koga P, Xu W, Karpova TS. Hsp90 inhibition transiently activates Sic kinase ami promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A. 2006;103(30):11318–22.PubMedCentralPubMedCrossRef Koga P, Xu W, Karpova TS. Hsp90 inhibition transiently activates Sic kinase ami promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A. 2006;103(30):11318–22.PubMedCentralPubMedCrossRef
23.
go back to reference Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004;6(6):507–14.PubMedCrossRef Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004;6(6):507–14.PubMedCrossRef
24.
go back to reference Kregel KC. Ileal shock proteins: modifying factors in physiological stress responses and acquired Ihemiotolerance. J Appl Physiol. 2002;92(5):2177–86.PubMedCrossRef Kregel KC. Ileal shock proteins: modifying factors in physiological stress responses and acquired Ihemiotolerance. J Appl Physiol. 2002;92(5):2177–86.PubMedCrossRef
25.
go back to reference Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004;206:149–57.PubMedCrossRef Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004;206:149–57.PubMedCrossRef
26.
go back to reference Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrin. 2007;275(1–2):2–12.CrossRef Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrin. 2007;275(1–2):2–12.CrossRef
27.
go back to reference Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 2010;103:668–75.PubMedCentralPubMedCrossRef Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 2010;103:668–75.PubMedCentralPubMedCrossRef
28.
go back to reference Vaillant F, Merino D, Lee L, Breslin K, Pall B, Ritchie ME, et al. Targeting BCL-2 with the BH3 Mimetic ABT-199 in Estrogen Receptor-Positive Breast Cancer. Cancer Cell. 2013;24(1):120–9.PubMedCrossRef Vaillant F, Merino D, Lee L, Breslin K, Pall B, Ritchie ME, et al. Targeting BCL-2 with the BH3 Mimetic ABT-199 in Estrogen Receptor-Positive Breast Cancer. Cancer Cell. 2013;24(1):120–9.PubMedCrossRef
29.
go back to reference Lindeman GJ, Visvader JE. Targeting BCL-2 in breast cancer: exploiting a tumor lifeline to deliver a mortal blow? Breast Cancer Manage. 2013;2:1–4.CrossRef Lindeman GJ, Visvader JE. Targeting BCL-2 in breast cancer: exploiting a tumor lifeline to deliver a mortal blow? Breast Cancer Manage. 2013;2:1–4.CrossRef
30.
go back to reference Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.PubMedCrossRef Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.PubMedCrossRef
31.
go back to reference Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene. 2000;19(56):6627–31.PubMedCrossRef Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene. 2000;19(56):6627–31.PubMedCrossRef
Metadata
Title
Immune microenvironment as a factor of breast cancer progression
Authors
Anatolii Romaniuk
Mykola Lуndіn
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0316-y

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue