Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study

Authors: Thaís M McCormick, Nathalie HS Canedo, Yara L Furtado, Filomena A Silveira, Roberto J de Lima, Andréa DF Rosman, Gutemberg L Almeida Filho, Maria da Glória da C Carvalho

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Human papillomavirus (HPV) inactivates the retinoblastoma 1 (RB1) gene by promoter methylation and reduces cellular E-cadherin expression by overexpression of DNA methyltransferase 1 (DNMT1). The Epstein-Barr virus (EBV) is an oncogenic virus that may be related to cervical carcinogenesis. In gastric cancer, it has been demonstrated that E-cadherin gene (CDH1) hypermethylation is associated with DNMT1 overexpression by EBV infection. Our aim was to analyze the gene promoter methylation frequency of RB1 and CDH1 and verify the association between that methylation frequency and HPV and EBV infection in cervical lesions.

Methods

Sixty-five samples were obtained from cervical specimens: 15 normal cervices, 17 low-grade squamous intraepithelial lesions (LSIL), 15 high-grade squamous intraepithelial lesions (HSIL), and 18 cervical cancers. HPV and EBV DNA testing was performed by PCR, and the methylation status was verified by MSP.

Results

HPV frequency was associated with cervical cancer cases (p = 0.005) but not EBV frequency (p = 0.732). Viral co-infection showed a statistically significant correlation with cancer (p = 0.027). No viral infection was detected in 33.3% (5/15) of controls. RB1 methylated status was associated with cancer (p = 0.009) and HPV infection (p = 0.042). CDH1 methylation was not associated with cancer (p = 0.181). Controls and LSIL samples did not show simultaneous methylation, while both genes were methylated in 27.8% (5/18) of cancer samples. In the presence of EBV, CDH1 methylation was present in 27.8% (5/18) of cancer samples. Only cancer cases presented RB1 promoter methylation in the presence of HPV and EBV (33.3%).

Conclusions

The methylation status of both genes increased with disease progression. With EBV, RB1 methylation was a tumor-associated event because only the cancer group presented methylated RB1 with HPV infection. HPV infection was shown to be significantly correlated with cancer conditions. The global methylation frequency was higher when HPV was present, showing its epigenetic role in cervical carcinogenesis. Nevertheless, EBV seems to be a cofactor and needs to be further investigated.

Virtual Slides

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​1159157579149317​.
Literature
1.
go back to reference Ministério da Saúde, Instituto Nacional de Câncer. In: da Silva JAG, editor. Estimativa 2014: Incidência de Câncer no Brasil. Rio de Janeiro: INCA; 2014. p. 124. Ministério da Saúde, Instituto Nacional de Câncer. In: da Silva JAG, editor. Estimativa 2014: Incidência de Câncer no Brasil. Rio de Janeiro: INCA; 2014. p. 124.
2.
go back to reference Ministério da Saúde, Instituto Nacional de Câncer. In: da Silva JAG, editor. Estimativa 2012: Incidência de Câncer no Brasil. Rio de Janeiro: INCA; 2011. p. 118. Ministério da Saúde, Instituto Nacional de Câncer. In: da Silva JAG, editor. Estimativa 2012: Incidência de Câncer no Brasil. Rio de Janeiro: INCA; 2011. p. 118.
3.
go back to reference Zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta. 1996;1288:F55–78.PubMed Zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta. 1996;1288:F55–78.PubMed
4.
go back to reference Badal V, Chuang LSH, Tan EHH, Badal S, Villa LL, Wheeler CM, et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical genomic hypomethylation correlates with carcinogenic progression. J Virol. 2003;77(11):6227–34.CrossRefPubMedCentralPubMed Badal V, Chuang LSH, Tan EHH, Badal S, Villa LL, Wheeler CM, et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical genomic hypomethylation correlates with carcinogenic progression. J Virol. 2003;77(11):6227–34.CrossRefPubMedCentralPubMed
6.
go back to reference Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev Cancer. 2002;2:342–50.CrossRef Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev Cancer. 2002;2:342–50.CrossRef
7.
go back to reference Lu Q, Ma D, Zhao S. DNA methylation changes in cervical cancers. Methods Bio Mol. 2012;863:155–76. Lu Q, Ma D, Zhao S. DNA methylation changes in cervical cancers. Methods Bio Mol. 2012;863:155–76.
8.
go back to reference Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogen. 2002;21:6041–8.CrossRef Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogen. 2002;21:6041–8.CrossRef
9.
go back to reference Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E. Epigenetics of cervical cancer: An overview and therapeutic perspectives. Mol Cancer. 2005;4:38.CrossRefPubMedCentralPubMed Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E. Epigenetics of cervical cancer: An overview and therapeutic perspectives. Mol Cancer. 2005;4:38.CrossRefPubMedCentralPubMed
10.
go back to reference Laurson J, Khan S, Chung R, Cross K, Raj K. Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis. 2010;31(5):918–26.CrossRefPubMedCentralPubMed Laurson J, Khan S, Chung R, Cross K, Raj K. Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis. 2010;31(5):918–26.CrossRefPubMedCentralPubMed
11.
12.
go back to reference Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99.CrossRefPubMedCentralPubMed Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99.CrossRefPubMedCentralPubMed
13.
go back to reference Lattario F, Furtado YL, Fonseca R, Silveira FA, Do Val IC, Almeida G, et al. Analysis of human papillomavirus and Epstein-Barr virus infection and aberrant death-associated protein kinase methylation in high-grade squamous intraepithelial lesions. Int J Gynecol Cancer. 2008;18:785–9.CrossRefPubMed Lattario F, Furtado YL, Fonseca R, Silveira FA, Do Val IC, Almeida G, et al. Analysis of human papillomavirus and Epstein-Barr virus infection and aberrant death-associated protein kinase methylation in high-grade squamous intraepithelial lesions. Int J Gynecol Cancer. 2008;18:785–9.CrossRefPubMed
14.
go back to reference Pestaner C, Bibbo M, Bobroski L, Seshamma T, Bagasra O. Potencial of the in situ Polymerase Chain Reaction in diagnostic cytology. Acta Cytological. 1994;38:676–80. Pestaner C, Bibbo M, Bobroski L, Seshamma T, Bagasra O. Potencial of the in situ Polymerase Chain Reaction in diagnostic cytology. Acta Cytological. 1994;38:676–80.
15.
go back to reference Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. Use of polymerase chain reaction amplification for the detection of genital human papillomavirus. Cancer Cells. 1989;7:209–14. Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. Use of polymerase chain reaction amplification for the detection of genital human papillomavirus. Cancer Cells. 1989;7:209–14.
16.
go back to reference Saito I, Servenius B, Compton T, Fox RI. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J Exp Med. 1989;169:2191–8.CrossRefPubMed Saito I, Servenius B, Compton T, Fox RI. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J Exp Med. 1989;169:2191–8.CrossRefPubMed
17.
go back to reference Rosas SLB, Caballero OL, Dong SM, Carvalho MGC, Sidransky D, Jen J. Methylation status in the promoter region of human PGP9.5 gene in cancer and normal tissue. Cancer Lett. 2001;170:235–46. Rosas SLB, Caballero OL, Dong SM, Carvalho MGC, Sidransky D, Jen J. Methylation status in the promoter region of human PGP9.5 gene in cancer and normal tissue. Cancer Lett. 2001;170:235–46.
18.
go back to reference Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE. Loss of pRb Expression in Pituitary Adenomas Is Associated with Methylation of the RB1 CpG Island. Cancer Res. 2000;60:1211–6.PubMed Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE. Loss of pRb Expression in Pituitary Adenomas Is Associated with Methylation of the RB1 CpG Island. Cancer Res. 2000;60:1211–6.PubMed
19.
go back to reference Graff JR, Herman JG, Myo¨ha¨nen S, Baylin SB, Vertino PM. Mapping Patterns of CpG Island Methylation in Normal and Neoplastic Cells Implicates Both Upstream and Downstream Regions in de Novo Methylation. J Biol Chem. 1997;272:22322–9.CrossRefPubMed Graff JR, Herman JG, Myo¨ha¨nen S, Baylin SB, Vertino PM. Mapping Patterns of CpG Island Methylation in Normal and Neoplastic Cells Implicates Both Upstream and Downstream Regions in de Novo Methylation. J Biol Chem. 1997;272:22322–9.CrossRefPubMed
20.
go back to reference Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: Appraisal of the state-of-the-science. Gynecol Oncol. 2009;112:293–9.CrossRefPubMedCentralPubMed Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: Appraisal of the state-of-the-science. Gynecol Oncol. 2009;112:293–9.CrossRefPubMedCentralPubMed
21.
go back to reference Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst. 2005;97:273–82.CrossRefPubMed Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst. 2005;97:273–82.CrossRefPubMed
22.
go back to reference Han J, Swan DC, Smith SJ, Lum SH, Sefers SE, Unger ER, et al. Simultaneous amplification and identification of 25 human papillomavirus types with templex technology. J Clin Microbiol. 2006;44(11):4157–62.CrossRefPubMedCentralPubMed Han J, Swan DC, Smith SJ, Lum SH, Sefers SE, Unger ER, et al. Simultaneous amplification and identification of 25 human papillomavirus types with templex technology. J Clin Microbiol. 2006;44(11):4157–62.CrossRefPubMedCentralPubMed
23.
go back to reference Sotlar K, Diemer D, Dethleffs A, Hack Y, Stubner A, Vollmer N, et al. Detection and typing of human papillomavirus by E6 nested multiplex PCR. J Clin Microbiol. 2004;42(7):3176–84.CrossRefPubMedCentralPubMed Sotlar K, Diemer D, Dethleffs A, Hack Y, Stubner A, Vollmer N, et al. Detection and typing of human papillomavirus by E6 nested multiplex PCR. J Clin Microbiol. 2004;42(7):3176–84.CrossRefPubMedCentralPubMed
24.
go back to reference Ayres ARG, Azevedo-Silva G. Cervical HPV infection in Brazil: systematic review. Rev Saúde Pública. 2010;44(5):963–74.PubMed Ayres ARG, Azevedo-Silva G. Cervical HPV infection in Brazil: systematic review. Rev Saúde Pública. 2010;44(5):963–74.PubMed
25.
go back to reference Rabelo-Santos SH, Zeferino L, Villa LL, Sobrinho JP, Amaral RG, Magalhães AV. Human Papillomavirus Prevalence among Women with Cervical Intraepithelial Neoplasia III and Invasive Cervical Cancer from Goiânia, Brazil. Mem Inst Oswaldo Cruz. 2003;98(2):181–4.CrossRefPubMed Rabelo-Santos SH, Zeferino L, Villa LL, Sobrinho JP, Amaral RG, Magalhães AV. Human Papillomavirus Prevalence among Women with Cervical Intraepithelial Neoplasia III and Invasive Cervical Cancer from Goiânia, Brazil. Mem Inst Oswaldo Cruz. 2003;98(2):181–4.CrossRefPubMed
26.
go back to reference Baay MFD, Quint WGV, Koudstall J, Hollema H, Duk JM, Burger MPM, et al. Comprehensive study of several general and type-specific primer pair for detection of human papillomavirus DNA by PCR in paraffin-mbedded cervical carcinomas. J Clin Microbiol. 1996;34:745–7.PubMedCentralPubMed Baay MFD, Quint WGV, Koudstall J, Hollema H, Duk JM, Burger MPM, et al. Comprehensive study of several general and type-specific primer pair for detection of human papillomavirus DNA by PCR in paraffin-mbedded cervical carcinomas. J Clin Microbiol. 1996;34:745–7.PubMedCentralPubMed
27.
go back to reference Unger ER, Vernon SD, Lee DR, Miller DL, Reeves WC. Detection of human papillomavirus in archival tissues: comparison of in situ hybridization and polymerase chain reaction. J Histochem Cytochem. 1998;46:535–40.CrossRefPubMed Unger ER, Vernon SD, Lee DR, Miller DL, Reeves WC. Detection of human papillomavirus in archival tissues: comparison of in situ hybridization and polymerase chain reaction. J Histochem Cytochem. 1998;46:535–40.CrossRefPubMed
28.
go back to reference Noronha V, Mello W, Villa LL, Macedo R, Bisi F, Mota R, et al. Human papillomavirus associated with uterine cervix lesions. Rev Soc Bras Med Trop. 1999;32:235–40.CrossRefPubMed Noronha V, Mello W, Villa LL, Macedo R, Bisi F, Mota R, et al. Human papillomavirus associated with uterine cervix lesions. Rev Soc Bras Med Trop. 1999;32:235–40.CrossRefPubMed
29.
go back to reference Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.CrossRefPubMed Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.CrossRefPubMed
30.
go back to reference Nichols W, Sutton K, Nelson N, Clark A, Oddo H, Love N, Hagensee M. 27th International Papillomavirus Conference and Clinical Workshop. Berlin, Germany; 2011. (Abstract), Epstein-Barr virus as a Potential Biomarker for Cervical Dysplasia; pp.14–15. (Abstract book 2, page 59) Nichols W, Sutton K, Nelson N, Clark A, Oddo H, Love N, Hagensee M. 27th International Papillomavirus Conference and Clinical Workshop. Berlin, Germany; 2011. (Abstract), Epstein-Barr virus as a Potential Biomarker for Cervical Dysplasia; pp.14–15. (Abstract book 2, page 59)
31.
go back to reference Ekalaksananan T, Aromseree S, Pientong C, Sunthamala N, Swangphon P, Chaiwongkot A, Kongyingyoes B, Patarapadungkit N, Chumworathayee B. 27th International Papillomavirus Conference and Clinical Workshop. Berlin, Germany; 2011. (Abstract), Co-infection of Epstein-Barr Virus (EBV) with High Risk Human Papillomavirus (HR-HPV) is a Significant Risk of Cervical Cancer; pp. 14–33. (Abstract book 2, page68) Ekalaksananan T, Aromseree S, Pientong C, Sunthamala N, Swangphon P, Chaiwongkot A, Kongyingyoes B, Patarapadungkit N, Chumworathayee B. 27th International Papillomavirus Conference and Clinical Workshop. Berlin, Germany; 2011. (Abstract), Co-infection of Epstein-Barr Virus (EBV) with High Risk Human Papillomavirus (HR-HPV) is a Significant Risk of Cervical Cancer; pp. 14–33. (Abstract book 2, page68)
32.
go back to reference Khenchouche A, Sadouki N, Boudriche A, Houali K, Graba A, Ooka T, et al. Human papillomavirus and Epstein-Barr virus co-infection in cervical carcinoma in Algerian women. Virol J. 2013;10:340.CrossRefPubMedCentralPubMed Khenchouche A, Sadouki N, Boudriche A, Houali K, Graba A, Ooka T, et al. Human papillomavirus and Epstein-Barr virus co-infection in cervical carcinoma in Algerian women. Virol J. 2013;10:340.CrossRefPubMedCentralPubMed
33.
go back to reference Chen CL, Liu SS, Ipb SM, Wongb LC, Ng TY, Nganb HYS. E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur J Cancer. 2003;39:517–23.CrossRefPubMed Chen CL, Liu SS, Ipb SM, Wongb LC, Ng TY, Nganb HYS. E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur J Cancer. 2003;39:517–23.CrossRefPubMed
34.
go back to reference Dong SM, Kim HS, Rha SH, Sidransky D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res. 2001;7:1982–6.PubMed Dong SM, Kim HS, Rha SH, Sidransky D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res. 2001;7:1982–6.PubMed
35.
go back to reference Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, et al. Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer. 2003;2:24–35.CrossRefPubMedCentralPubMed Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, et al. Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer. 2003;2:24–35.CrossRefPubMedCentralPubMed
36.
go back to reference Attaleb M, El hamadani W, Khyatti M, Benbacer L, Benchekroun N, Benider A, et al. Status of p16INK4a and E-Cadherin genes promoter methylation in Moroccan patients with cervical carcinoma. Oncol Res. 2009;18:185–92.CrossRefPubMed Attaleb M, El hamadani W, Khyatti M, Benbacer L, Benchekroun N, Benider A, et al. Status of p16INK4a and E-Cadherin genes promoter methylation in Moroccan patients with cervical carcinoma. Oncol Res. 2009;18:185–92.CrossRefPubMed
Metadata
Title
Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study
Authors
Thaís M McCormick
Nathalie HS Canedo
Yara L Furtado
Filomena A Silveira
Roberto J de Lima
Andréa DF Rosman
Gutemberg L Almeida Filho
Maria da Glória da C Carvalho
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0283-3

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue