Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

Expression of SATB1 and HER2 in breast cancer and the correlations with clinicopathologic characteristics

Authors: Xiangdong Liu, Yan Zheng, Chuanwu Qiao, Fei Qv, Jingnan Wang, Butong Ding, Yuping Sun, Yunshan Wang

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Special AT-rich sequence binding protein 1 (SATB1) is found acting as a “genome organizer” that functions as a landing platform to regulate tissue-specific gene ex-pression. In breast cancer cell lines it has been proven that SATB1 could upregulate the expression of the HER2. In this paper, the relevance of SATB1 and HER2 expression was assessed in human breast cancer tissues, and their influence on tumor histological grade and patients’ survival was explored.

Methods

Using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), 169 patients with breast cancer were assessed for SATB1 expression, HER2 amplification and hormone-receptor (HR) expression. The effects of SATB1 expression on HER2 and HR expression as well as their association with clinicopathologic characteristics were further analyzed by statistical evaluation.

Results

SATB1 expression was correlated with HER2 expression in breast cancer(r = 0.191; p = 0.013). SATB1, HER2 and SATB1/HER2 co-expression was negatively correlated with HR expression (r = −0.228, p = 0.003; r = −0.338, p = 0.000; r = −0.527, p = 0.000, respectively). SATB1 and HER2 single positive and their co-expression were all significantly correlated with higher histological grade (r = 0.239, p = 0.002; r = 0.160, p = 0.038; r = 0.306, p = 0.003, respectively). Multivariate cox regression analyses showed that SATB1 and HER2 were independent risk factors for breast cancer patients, while HR was a protective factor for patients’ survival. Comparing to SATB1 or HER2 single positive expression, SATB1/HER2 co-expression tended to have even worse prognosis.

Conclusions

SATB1 and HER2 performed a synergistic effect in breast cancer. Their expression correlated with poorly differentiated breast cancer and indicated an unfavorable prognosis.

Virtual slides

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​1400555050159723​.
Literature
1.
go back to reference Purbey PK, Singh S, Notani D, Kumar PP, Limaye AS, Galande S. Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol. 2009;29(5):1321–37.CrossRefPubMedCentralPubMed Purbey PK, Singh S, Notani D, Kumar PP, Limaye AS, Galande S. Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol. 2009;29(5):1321–37.CrossRefPubMedCentralPubMed
3.
go back to reference Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.CrossRefPubMed Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.CrossRefPubMed
4.
go back to reference Cheng C, Lu X, Wang G, Zheng L, Shu X, Zhu S, et al. Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS. 2010;118(11):855–63.CrossRefPubMed Cheng C, Lu X, Wang G, Zheng L, Shu X, Zhu S, et al. Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS. 2010;118(11):855–63.CrossRefPubMed
5.
go back to reference Chen H, Takahara M, Oba J, Xie L, Chiba T, Takeuchi S, et al. Clinicopathologic and prognostic significance of SATB1 in cutaneous malignant melanoma. J Dermatol Sci. 2011;64(1):39–44.CrossRefPubMed Chen H, Takahara M, Oba J, Xie L, Chiba T, Takeuchi S, et al. Clinicopathologic and prognostic significance of SATB1 in cutaneous malignant melanoma. J Dermatol Sci. 2011;64(1):39–44.CrossRefPubMed
6.
go back to reference Zhou LY, Liu F, Tong J, Chen QQ, Zhang FW. Expression of special AT-rich sequence-binding protein mRNA and its clinicopathological significance in non-small cell lung cancer. J Southern Med University. 2009;29(3):534–7. Zhou LY, Liu F, Tong J, Chen QQ, Zhang FW. Expression of special AT-rich sequence-binding protein mRNA and its clinicopathological significance in non-small cell lung cancer. J Southern Med University. 2009;29(3):534–7.
7.
go back to reference Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, et al. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell. 2009;16(4):507–16.CrossRefPubMedCentralPubMed Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, et al. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell. 2009;16(4):507–16.CrossRefPubMedCentralPubMed
8.
go back to reference Ross JS, Fletcher JA. The HER-2/neu Oncogene in Breast Cancer: Prognostic Factor, Predictive Factor, and Target for Therapy. Oncologist. 1998;3(4):237–52.PubMed Ross JS, Fletcher JA. The HER-2/neu Oncogene in Breast Cancer: Prognostic Factor, Predictive Factor, and Target for Therapy. Oncologist. 1998;3(4):237–52.PubMed
9.
go back to reference Menard S, Fortis S, Castiglioni F, Agresti R, Balsari A. HER2 as a prognostic factor in breast cancer. Oncology. 2001;61 Suppl 2:67–72.PubMed Menard S, Fortis S, Castiglioni F, Agresti R, Balsari A. HER2 as a prognostic factor in breast cancer. Oncology. 2001;61 Suppl 2:67–72.PubMed
10.
go back to reference Azizun N, Bhurgri Y, Raza F, Kayani N. Comparison of ER, PR and HER-2/neu (C-erb B 2) reactivity pattern with histologic grade, tumor size and lymph node status in breast cancer. Asian Pac J Cancer Prev. 2008;9(4):553–6. Azizun N, Bhurgri Y, Raza F, Kayani N. Comparison of ER, PR and HER-2/neu (C-erb B 2) reactivity pattern with histologic grade, tumor size and lymph node status in breast cancer. Asian Pac J Cancer Prev. 2008;9(4):553–6.
11.
go back to reference Hussein MR, Abd-Elwahed SR, Abdulwahed AR. Alterations of estrogen receptors, progesterone receptors and c-erbB2 oncogene protein expression in ductal carcinomas of the breast. Cell Biol Int. 2008;32(6):698–707.CrossRefPubMed Hussein MR, Abd-Elwahed SR, Abdulwahed AR. Alterations of estrogen receptors, progesterone receptors and c-erbB2 oncogene protein expression in ductal carcinomas of the breast. Cell Biol Int. 2008;32(6):698–707.CrossRefPubMed
12.
go back to reference Konecny G, Pauletti G, Pegram M, Untch M, Dandekar S, Aguilar Z, et al. Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst. 2003;95(2):142–53.CrossRefPubMed Konecny G, Pauletti G, Pegram M, Untch M, Dandekar S, Aguilar Z, et al. Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst. 2003;95(2):142–53.CrossRefPubMed
13.
go back to reference Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev. 2013;39(8):935–46.CrossRefPubMed Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev. 2013;39(8):935–46.CrossRefPubMed
14.
go back to reference Kato S, Masuhiro Y, Watanabe M, Kobayashi Y, Takeyama KI, Endoh H, et al. Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. Genes Cells. 2000;5(8):593–601.CrossRefPubMed Kato S, Masuhiro Y, Watanabe M, Kobayashi Y, Takeyama KI, Endoh H, et al. Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. Genes Cells. 2000;5(8):593–601.CrossRefPubMed
15.
16.
go back to reference Lal P, Tan LK, Chen B. Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3,655 invasive breast carcinomas. Am J Clin Pathol. 2005;123(4):541–6.CrossRefPubMed Lal P, Tan LK, Chen B. Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3,655 invasive breast carcinomas. Am J Clin Pathol. 2005;123(4):541–6.CrossRefPubMed
17.
go back to reference Yanagisawa J, Ando J, Nakayama J, Kohwi Y, Kohwi-Shigematsu T. A matrix attachment region (MAR)-binding activity due to a p114 kilodalton protein is found only in human breast carcinomas and not in normal and benign breast disease tissues. Cancer Res. 1996;56(3):457–62.PubMed Yanagisawa J, Ando J, Nakayama J, Kohwi Y, Kohwi-Shigematsu T. A matrix attachment region (MAR)-binding activity due to a p114 kilodalton protein is found only in human breast carcinomas and not in normal and benign breast disease tissues. Cancer Res. 1996;56(3):457–62.PubMed
18.
go back to reference Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Watanabe S, et al. Correlation between histologic grade of malignancy and copy number of c-erbB-2 gene in breast carcinoma. A retrospective analysis of 176 cases. Cancer. 1990;65(8):1794–800.CrossRefPubMed Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Watanabe S, et al. Correlation between histologic grade of malignancy and copy number of c-erbB-2 gene in breast carcinoma. A retrospective analysis of 176 cases. Cancer. 1990;65(8):1794–800.CrossRefPubMed
19.
go back to reference Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, et al. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci. 2010;101(1):80–6.CrossRefPubMed Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, et al. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci. 2010;101(1):80–6.CrossRefPubMed
20.
go back to reference Pu X, Shi J, Li Z, Feng A, Ye Q. Comparison of the 2007 and 2013 ASCO/CAP evaluation systems for HER2 amplification in breast cancer. Pathol Res Pract. 2015;211(6):412–5. Pu X, Shi J, Li Z, Feng A, Ye Q. Comparison of the 2007 and 2013 ASCO/CAP evaluation systems for HER2 amplification in breast cancer. Pathol Res Pract. 2015;211(6):412–5.
21.
go back to reference Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed
22.
go back to reference Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clinical Oncol. 2010;28(16):2784–95.CrossRef Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clinical Oncol. 2010;28(16):2784–95.CrossRef
23.
go back to reference Marianna Sasso FB, Ciravolo V, Tagliabue E, Campiglio M. HER2 splice variants and their relevance in breast cancer. J Nucleic Acid Invest. 2011;2(9):52–8. Marianna Sasso FB, Ciravolo V, Tagliabue E, Campiglio M. HER2 splice variants and their relevance in breast cancer. J Nucleic Acid Invest. 2011;2(9):52–8.
24.
go back to reference Devilee P, Cornelisse CJ. Genetics of human breast cancer. Cancer Surv. 1990;9(4):605–30.PubMed Devilee P, Cornelisse CJ. Genetics of human breast cancer. Cancer Surv. 1990;9(4):605–30.PubMed
25.
go back to reference Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003;34(1):42–51.CrossRefPubMed Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003;34(1):42–51.CrossRefPubMed
26.
go back to reference Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 2013;23(2):72–9.CrossRefPubMedCentralPubMed Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 2013;23(2):72–9.CrossRefPubMedCentralPubMed
27.
go back to reference Heubner M, Kimmig R, Aktas B, Siffert W, Frey UH. The haplotype of three polymorphisms in the promoter region impacts survival in breast cancer patients. Oncol Letters. 2014;7(6):2007–12. Heubner M, Kimmig R, Aktas B, Siffert W, Frey UH. The haplotype of three polymorphisms in the promoter region impacts survival in breast cancer patients. Oncol Letters. 2014;7(6):2007–12.
28.
go back to reference Purdie CA, Baker L, Ashfield A, Chatterjee S, Jordan LB, Quinlan P, et al. Increased mortality in HER2 positive, oestrogen receptor positive invasive breast cancer: a population-based study. Br J Cancer. 2010;103(4):475–81.CrossRefPubMedCentralPubMed Purdie CA, Baker L, Ashfield A, Chatterjee S, Jordan LB, Quinlan P, et al. Increased mortality in HER2 positive, oestrogen receptor positive invasive breast cancer: a population-based study. Br J Cancer. 2010;103(4):475–81.CrossRefPubMedCentralPubMed
29.
go back to reference Davoli A, Hocevar BA, Brown TL. Progression and treatment of HER2-positive breast cancer. Cancer Chemother Pharmacol. 2010;65(4):611–23.CrossRefPubMed Davoli A, Hocevar BA, Brown TL. Progression and treatment of HER2-positive breast cancer. Cancer Chemother Pharmacol. 2010;65(4):611–23.CrossRefPubMed
30.
go back to reference Papavasileiou D, Tosios K, Christopoulos P, Goutas N, Vlachodimitropoulos D. Her-2 immunohistochemical expression in oral squamous cell carcinomas is associated with polysomy of chromosome 17, not Her-2 amplification. Head Neck Pathol. 2009;3(4):263–70.CrossRefPubMedCentralPubMed Papavasileiou D, Tosios K, Christopoulos P, Goutas N, Vlachodimitropoulos D. Her-2 immunohistochemical expression in oral squamous cell carcinomas is associated with polysomy of chromosome 17, not Her-2 amplification. Head Neck Pathol. 2009;3(4):263–70.CrossRefPubMedCentralPubMed
31.
go back to reference Garcia-Becerra R, Santos N, Diaz L, Camacho J. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance. Int J Mol Sci. 2012;14(1):108–45.CrossRefPubMedCentralPubMed Garcia-Becerra R, Santos N, Diaz L, Camacho J. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance. Int J Mol Sci. 2012;14(1):108–45.CrossRefPubMedCentralPubMed
32.
go back to reference Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology. 2001;61 Suppl 2:73–82.CrossRefPubMed Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology. 2001;61 Suppl 2:73–82.CrossRefPubMed
33.
go back to reference Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10(12):2435–46.PubMed Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10(12):2435–46.PubMed
34.
go back to reference Kobierzycki C, Wojnar A, Dziegiel P. Expression of SATB1 protein in the ductal breast carcinoma tissue microarrays - preliminary study. Folia Histochem Cytobiol. 2013;51(4):333–8.CrossRefPubMed Kobierzycki C, Wojnar A, Dziegiel P. Expression of SATB1 protein in the ductal breast carcinoma tissue microarrays - preliminary study. Folia Histochem Cytobiol. 2013;51(4):333–8.CrossRefPubMed
35.
go back to reference Ye CS, Zhou DN, Yang QQ, Deng YF. Silencing SATB1 influences cell invasion, migration, proliferation, and drug resistance in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2014;7(3):914–22.PubMedCentralPubMed Ye CS, Zhou DN, Yang QQ, Deng YF. Silencing SATB1 influences cell invasion, migration, proliferation, and drug resistance in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2014;7(3):914–22.PubMedCentralPubMed
36.
go back to reference Zhang H, Su X, Guo L, Zhong L, Li W, Yue Z, et al. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci. 2014;11(12):1262–9.CrossRefPubMedCentralPubMed Zhang H, Su X, Guo L, Zhong L, Li W, Yue Z, et al. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci. 2014;11(12):1262–9.CrossRefPubMedCentralPubMed
Metadata
Title
Expression of SATB1 and HER2 in breast cancer and the correlations with clinicopathologic characteristics
Authors
Xiangdong Liu
Yan Zheng
Chuanwu Qiao
Fei Qv
Jingnan Wang
Butong Ding
Yuping Sun
Yunshan Wang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0282-4

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue