Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

Immunoexpression of napsin a in renal neoplasms

Authors: Bing Zhu, Stephen M Rohan, Xiaoqi Lin

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Immunohistochemistry (IHC) for napsin A has been widely used to support a diagnosis of lung adenocarcinoma with high sensitivity. In this study, we evaluated immunoreactivity for napsin A in a broad spectrum of renal neoplasms by using tissue microarrays (TMA).

Methods

Duplicate TMA of 159 surgically excised renal neoplasms of various types were constructed. IHC for napsin A was performed on TMAs with appropriate positive and negative controls.

Results

Napsin A was expressed in Acquired cystic disease associated renal cell carcinoma (RCC) (2/2, 100.0%), chromophobe RCC (5/45, 11.1%), clear cell RCC (10/23, 43.5%), clear cell papillary RCC (9/19, 47.4%), metanephric adenoma (3/3, 100.0%), oncocytoma (13/23, 56.5%), and papillary RCC (31/37, 83.8%). Expression of napsin A was not seen in mucinous tubular and spindle cell carcinoma (0/1, 0.0%), TFE/MITF RCC 0/1, 0.0%), and urothelial carcinoma (0/6, 0.0%).

Conclusions

Napsin A is expressed in both common and rare sub-types of renal neoplasms with variable sensitivity. Based on our results, napsin A is not specific for lung adenocarcinoma. When a metastatic carcinoma of unknown primary is positive for napsin A, the differential diagnosis should include tumors of both renal and lung origin.

Virtual slides

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​9558727831304717​.
Literature
1.
go back to reference Mori K, Shimizu H, Konno A, Iwanaga T. Immunohistochemical localization of napsin and its potential role in protein catabolism in renal proximal tubules. Arch Histol Cytol. 2002;65:359–68.CrossRefPubMed Mori K, Shimizu H, Konno A, Iwanaga T. Immunohistochemical localization of napsin and its potential role in protein catabolism in renal proximal tubules. Arch Histol Cytol. 2002;65:359–68.CrossRefPubMed
2.
go back to reference Mori K, Kon Y, Konno A, Iwanaga T. Cellular distribution of napsin (kidney-derived aspartic protease-like protein, KAP) mRNA in the kidney, lung and lymphatic organs of adult and developing mice. Arch Histol Cytol. 2001;64:319–27.CrossRefPubMed Mori K, Kon Y, Konno A, Iwanaga T. Cellular distribution of napsin (kidney-derived aspartic protease-like protein, KAP) mRNA in the kidney, lung and lymphatic organs of adult and developing mice. Arch Histol Cytol. 2001;64:319–27.CrossRefPubMed
3.
go back to reference Kadivar M, Boozari B. Applications and limitations of immunohistochemical expression of “Napsin-A” in distinguishing lung adenocarcinoma from adenocarcinomas of other organs. Appl Immunohistochem Mol Morphol. 2013;21:191–5.PubMed Kadivar M, Boozari B. Applications and limitations of immunohistochemical expression of “Napsin-A” in distinguishing lung adenocarcinoma from adenocarcinomas of other organs. Appl Immunohistochem Mol Morphol. 2013;21:191–5.PubMed
4.
go back to reference Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41:20–5.CrossRefPubMed Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41:20–5.CrossRefPubMed
5.
go back to reference Terry J, Leung S, Laskin J, Leslie KO, Gown AM, Ionescu DN. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol. 2010;34:1805–11.CrossRefPubMed Terry J, Leung S, Laskin J, Leslie KO, Gown AM, Ionescu DN. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol. 2010;34:1805–11.CrossRefPubMed
6.
go back to reference Mukhopadhyay S, Katzenstein AL. Comparison of monoclonal napsin A, polyclonal napsin A, and TTF-1 for determining lung origin in metastatic adenocarcinomas. Am J Clin Pathol. 2012;138:703–11.CrossRefPubMed Mukhopadhyay S, Katzenstein AL. Comparison of monoclonal napsin A, polyclonal napsin A, and TTF-1 for determining lung origin in metastatic adenocarcinomas. Am J Clin Pathol. 2012;138:703–11.CrossRefPubMed
7.
go back to reference Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136:163–71.CrossRefPubMed Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136:163–71.CrossRefPubMed
8.
go back to reference Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol. 2013;37:1469–89.CrossRefPubMed Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol. 2013;37:1469–89.CrossRefPubMed
9.
go back to reference Zhu B, Dalal S, Kamp DW, Lin X. Warranting investigation of primary lung adenocarcinoma in patients with an extrapulmonary malignancy and lung nodules due to high frequency. Am J Clin Pathol. 2014;141:429–36.CrossRefPubMed Zhu B, Dalal S, Kamp DW, Lin X. Warranting investigation of primary lung adenocarcinoma in patients with an extrapulmonary malignancy and lung nodules due to high frequency. Am J Clin Pathol. 2014;141:429–36.CrossRefPubMed
10.
go back to reference Samplaski MK, Zhou M, Lane BR, Herts B, Campbell SC. Renal mass sampling: an enlightened perspective. Int J Urol. 2011;18:5–19.CrossRefPubMed Samplaski MK, Zhou M, Lane BR, Herts B, Campbell SC. Renal mass sampling: an enlightened perspective. Int J Urol. 2011;18:5–19.CrossRefPubMed
11.
go back to reference Al-Ahmadie HA, Alden D, Fine SW, Gopalan A, Touijer KA, Russo P, et al. Role of immunohistochemistry in the evaluation of needle core biopsies in adult renal cortical tumors: an ex vivo study. Am J Surg Pathol. 2011;35:949–61.CrossRefPubMed Al-Ahmadie HA, Alden D, Fine SW, Gopalan A, Touijer KA, Russo P, et al. Role of immunohistochemistry in the evaluation of needle core biopsies in adult renal cortical tumors: an ex vivo study. Am J Surg Pathol. 2011;35:949–61.CrossRefPubMed
Metadata
Title
Immunoexpression of napsin a in renal neoplasms
Authors
Bing Zhu
Stephen M Rohan
Xiaoqi Lin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0242-z

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue