Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2019

Open Access 01-12-2019 | Systematic review

Unravelling functional neurology: does spinal manipulation have an effect on the brain? - a systematic literature review

Authors: Anne-Laure Meyer, Michel-Ange Amorim, Martin Schubert, Petra Schweinhardt, Charlotte Leboeuf-Yde

Published in: Chiropractic & Manual Therapies | Issue 1/2019

Login to get access

Abstract

Background

A recent hypothesis purports that spinal manipulation may cause changes at a brain level. Functional Neurology, a mainly chiropractic approach, promotes the use of spinal manipulation to improve ‘brain function’ as if it were a proven construct. No systematic review has been performed to investigate how well founded this hypothesis is.

Objective

To investigate whether spinal manipulation has an effect on ‘brain function’ that is associated with any clinical benefits.

Method

In this systematic review, the literature was searched in PubMed, Embase, and PEDro (final search February 2018). We included randomized or non-randomized controlled studies, in which spinal manipulation was performed to any region of the spine, applied on either symptomatic or asymptomatic humans, and compared to a sham or to another type of control. The outcome measures had to be stated as direct or proxy markers of ‘brain function’. Articles were reviewed blindly by at least two reviewers, using a quality checklist designed for the specific needs of the review. Studies were classified as of ‘acceptable’, ‘medium’, or ‘low’ methodological quality. Results were reported in relation to (i) control intervention (sham, ‘inactive control’, or ‘another physical stimulus’) and (ii) study subjects (healthy, symptomatic, or with spinal pain” subjects/spinal pain”), taking into account the quality. Only results obtained from between-group or between-intervention comparisons were considered in the final analysis.

Results

Eighteen of 1514 articles were included. Studies were generally of ‘low’ or ‘medium’ methodological quality, most comparing spinal manipulation to a control other than a sham. Thirteen out of the 18 studies could be included in the final analysis. Transitory effects of different types of ‘brain function’ were reported in the three studies comparing spinal manipulation to sham (but of uncertain credibility), in “subclinical neck/spinal pain” subjects or in symptomatic subjects. None of these three studies, of ‘medium’ or ‘acceptable’ quality, investigated whether the neurophysiological effects reported were associated with clinical benefits. The remaining 10 studies, generally of ‘low’ or ‘medium’ quality, compared spinal manipulation to ‘inactive control’ or ‘another physical stimulus’ and similarly reported significant between-group differences but inconsistently.

Conclusion

The available evidence suggests that changes occur in ‘brain function’ in response to spinal manipulation but are inconsistent across and - sometimes - within studies. The clinical relevance of these changes is unknown. It is therefore premature to promote the use of spinal manipulation as a treatment to improve ‘brain function’.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adams J, Lauche R, Peng W, Steel A, Moore C, Amorin-Woods LG, Sibbritt D. A workforce survey of Australian chiropractic: the profile and practice features of a nationally representative sample of 2,005 chiropractors. BMC Complement Altern Med. 2017;17(1):14.CrossRef Adams J, Lauche R, Peng W, Steel A, Moore C, Amorin-Woods LG, Sibbritt D. A workforce survey of Australian chiropractic: the profile and practice features of a nationally representative sample of 2,005 chiropractors. BMC Complement Altern Med. 2017;17(1):14.CrossRef
2.
go back to reference Beliveau PJH, Wong JJ, Sutton DA, Simon NB, Bussieres AE, Mior SA, French SD. The chiropractic profession: a scoping review of utilization rates, reasons for seeking care, patient profiles, and care provided. Chiropr Man Therap. 2017;25:35.CrossRef Beliveau PJH, Wong JJ, Sutton DA, Simon NB, Bussieres AE, Mior SA, French SD. The chiropractic profession: a scoping review of utilization rates, reasons for seeking care, patient profiles, and care provided. Chiropr Man Therap. 2017;25:35.CrossRef
3.
go back to reference Clar C, Tsertsvadze A, Court R, Hundt GL, Clarke A, Sutcliffe P. Clinical effectiveness of manual therapy for the management of musculoskeletal and non-musculoskeletal conditions: systematic review and update of UK evidence report. Chiropr Man Therap. 2014;22(1):12.CrossRef Clar C, Tsertsvadze A, Court R, Hundt GL, Clarke A, Sutcliffe P. Clinical effectiveness of manual therapy for the management of musculoskeletal and non-musculoskeletal conditions: systematic review and update of UK evidence report. Chiropr Man Therap. 2014;22(1):12.CrossRef
4.
go back to reference Beck RW. Dedication. In: Functional Neurology for Practitioners of Manual Medicine edn: Churchill Livingston Elsevier; 2011. Beck RW. Dedication. In: Functional Neurology for Practitioners of Manual Medicine edn: Churchill Livingston Elsevier; 2011.
5.
go back to reference Meyer AL, Meyer A, Etherington S, Leboeuf-Yde C. Unravelling functional neurology: a scoping review of theories and clinical applications in a context of chiropractic manual therapy. Chiropr Man Therap. 2017;25:19.CrossRef Meyer AL, Meyer A, Etherington S, Leboeuf-Yde C. Unravelling functional neurology: a scoping review of theories and clinical applications in a context of chiropractic manual therapy. Chiropr Man Therap. 2017;25:19.CrossRef
6.
go back to reference Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768–76.CrossRef Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768–76.CrossRef
7.
go back to reference Beck RW. Approaches to treatment. In: Functional neurology for practitioners of manual medicine. edn: Churchill Livingstone: Elsevier; 2011. p. 343–79. Beck RW. Approaches to treatment. In: Functional neurology for practitioners of manual medicine. edn: Churchill Livingstone: Elsevier; 2011. p. 343–79.
8.
go back to reference Inami A, Ogura T, Watanuki S, Masud MM, Shibuya K, Miyake M, Matsuda R, Hiraoka K, Itoh M, Fuhr AW, et al. Glucose metabolic changes in the brain and muscles of patients with nonspecific neck pain treated by spinal manipulation therapy: a [(18)F]FDG PET study. Evid Based Complement Alternat Med. 2017;2017:4345703.CrossRef Inami A, Ogura T, Watanuki S, Masud MM, Shibuya K, Miyake M, Matsuda R, Hiraoka K, Itoh M, Fuhr AW, et al. Glucose metabolic changes in the brain and muscles of patients with nonspecific neck pain treated by spinal manipulation therapy: a [(18)F]FDG PET study. Evid Based Complement Alternat Med. 2017;2017:4345703.CrossRef
9.
go back to reference Sparks CL, Liu WC, Cleland JA, Kelly JP, Dyer SJ, Szetela KM, Elliott JM. Functional magnetic resonance imaging of cerebral hemodynamic responses to pain following thoracic thrust manipulation in individuals with neck pain: a randomized trial. J Manip Physiol Ther. 2017;40(9):625–34.CrossRef Sparks CL, Liu WC, Cleland JA, Kelly JP, Dyer SJ, Szetela KM, Elliott JM. Functional magnetic resonance imaging of cerebral hemodynamic responses to pain following thoracic thrust manipulation in individuals with neck pain: a randomized trial. J Manip Physiol Ther. 2017;40(9):625–34.CrossRef
10.
go back to reference Vernon H. Historical overview and update on subluxation theories. J Chiropr Humanit. 2010;17(1):22–32.CrossRef Vernon H. Historical overview and update on subluxation theories. J Chiropr Humanit. 2010;17(1):22–32.CrossRef
11.
go back to reference Haavik-Taylor H, Holt K, Murphy B. Exploring the neuromodulatory effects of the vertebral subluxation and chiropractic care. Chiropr J Aust. 2010;40(1):37–44. Haavik-Taylor H, Holt K, Murphy B. Exploring the neuromodulatory effects of the vertebral subluxation and chiropractic care. Chiropr J Aust. 2010;40(1):37–44.
12.
go back to reference McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. Front Hum Neurosci. 2013;7:152.CrossRef McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. Front Hum Neurosci. 2013;7:152.CrossRef
13.
go back to reference Meyer AL, Leboeuf-Yde C. Unravelling functional neurology: a critical review of clinical research articles on the effect or benefit of the functional neurology approach. Chiropr Man Therap. 2018;26:30.CrossRef Meyer AL, Leboeuf-Yde C. Unravelling functional neurology: a critical review of clinical research articles on the effect or benefit of the functional neurology approach. Chiropr Man Therap. 2018;26:30.CrossRef
14.
go back to reference Lelic D, Niazi IK, Holt K, Jochumsen M, Dremstrup K, Yielder P, Murphy B, Drewes AM, Haavik H. Manipulation of dysfunctional spinal joints affects sensorimotor integration in the prefrontal cortex: a brain source localization study. Neural Plast. 2016;2016:3704964.CrossRef Lelic D, Niazi IK, Holt K, Jochumsen M, Dremstrup K, Yielder P, Murphy B, Drewes AM, Haavik H. Manipulation of dysfunctional spinal joints affects sensorimotor integration in the prefrontal cortex: a brain source localization study. Neural Plast. 2016;2016:3704964.CrossRef
15.
go back to reference Baarbe JK, Yielder P, Haavik H, Holmes MWR, Murphy BA. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex. PLoS One. 2018;13(2):e0193413.CrossRef Baarbe JK, Yielder P, Haavik H, Holmes MWR, Murphy BA. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex. PLoS One. 2018;13(2):e0193413.CrossRef
16.
go back to reference Fryer G, Pearce AJ. The effect of lumbosacral manipulation on corticospinal and spinal reflex excitability on asymptomatic participants. J Manip Physiol Ther. 2012;35(2):86–93.CrossRef Fryer G, Pearce AJ. The effect of lumbosacral manipulation on corticospinal and spinal reflex excitability on asymptomatic participants. J Manip Physiol Ther. 2012;35(2):86–93.CrossRef
17.
go back to reference Dishman JD, Ball KA, Burke J. First prize: central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study. J Manip Physiol Ther. 2002;25(1):1–9.CrossRef Dishman JD, Ball KA, Burke J. First prize: central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study. J Manip Physiol Ther. 2002;25(1):1–9.CrossRef
18.
go back to reference Dishman JD, Greco DS, Burke JR. Motor-evoked potentials recorded from lumbar erector spinae muscles: a study of corticospinal excitability changes associated with spinal manipulation. J Manip Physiol Ther. 2008;31(4):258–70.CrossRef Dishman JD, Greco DS, Burke JR. Motor-evoked potentials recorded from lumbar erector spinae muscles: a study of corticospinal excitability changes associated with spinal manipulation. J Manip Physiol Ther. 2008;31(4):258–70.CrossRef
19.
go back to reference Ogura T, Tashiro M, Masud M, Watanuki S, Shibuya K, Yamaguchi K, Itoh M, Fukuda H, Yanai K. Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain. Altern Ther Health Med. 2011;17(6):12–7.PubMed Ogura T, Tashiro M, Masud M, Watanuki S, Shibuya K, Yamaguchi K, Itoh M, Fukuda H, Yanai K. Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain. Altern Ther Health Med. 2011;17(6):12–7.PubMed
20.
go back to reference Haavik-Taylor H, Murphy B. Transient modulation of intracortical inhibition following spinal manipulation. Chiropr J Aust. 2007;37:106–16. Haavik-Taylor H, Murphy B. Transient modulation of intracortical inhibition following spinal manipulation. Chiropr J Aust. 2007;37:106–16.
21.
go back to reference Haavik Taylor H, Murphy B. The effects of spinal manipulation on central integration of dual somatosensory input observed after motor training: a crossover study. J Manip Physiol Ther. 2010;33(4):261–72.CrossRef Haavik Taylor H, Murphy B. The effects of spinal manipulation on central integration of dual somatosensory input observed after motor training: a crossover study. J Manip Physiol Ther. 2010;33(4):261–72.CrossRef
22.
go back to reference Gay CW, Robinson ME, George SZ, Perlstein WM, Bishop MD. Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. J Manip Physiol Ther. 2014;37(9):614–27.CrossRef Gay CW, Robinson ME, George SZ, Perlstein WM, Bishop MD. Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. J Manip Physiol Ther. 2014;37(9):614–27.CrossRef
23.
go back to reference Taylor HH, Murphy B. Altered sensorimotor integration with cervical spine manipulation. J Manip Physiol Ther. 2008;31(2):115–26.CrossRef Taylor HH, Murphy B. Altered sensorimotor integration with cervical spine manipulation. J Manip Physiol Ther. 2008;31(2):115–26.CrossRef
24.
go back to reference Haavik H, Niazi IK, Jochumsen M, Sherwin D, Flavel S, Turker KS. Impact of spinal manipulation on cortical drive to upper and lower limb muscles. Brain Sci. 2016;7(1):E2. Haavik H, Niazi IK, Jochumsen M, Sherwin D, Flavel S, Turker KS. Impact of spinal manipulation on cortical drive to upper and lower limb muscles. Brain Sci. 2016;7(1):E2.
25.
go back to reference Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study. Clin Neurophysiol. 2007;118(2):391–402.CrossRef Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study. Clin Neurophysiol. 2007;118(2):391–402.CrossRef
26.
go back to reference Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manip Physiol Ther. 2010;33(3):178–88.CrossRef Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manip Physiol Ther. 2010;33(3):178–88.CrossRef
27.
go back to reference Niazi IK, Turker KS, Flavel S, Kinget M, Duehr J, Haavik H. Changes in H-reflex and V-waves following spinal manipulation. Exp Brain Res. 2015;233(4):1165–73.CrossRef Niazi IK, Turker KS, Flavel S, Kinget M, Duehr J, Haavik H. Changes in H-reflex and V-waves following spinal manipulation. Exp Brain Res. 2015;233(4):1165–73.CrossRef
28.
go back to reference Christiansen TL, Niazi IK, Holt K, Nedergaard RW, Duehr J, Allen K, Marshall P, Turker KS, Hartvigsen J, Haavik H. The effects of a single session of spinal manipulation on strength and cortical drive in athletes. Eur J Appl Physiol. 2018;118(4):737–49.CrossRef Christiansen TL, Niazi IK, Holt K, Nedergaard RW, Duehr J, Allen K, Marshall P, Turker KS, Hartvigsen J, Haavik H. The effects of a single session of spinal manipulation on strength and cortical drive in athletes. Eur J Appl Physiol. 2018;118(4):737–49.CrossRef
29.
go back to reference Kelly DD, Murphy BA, Backhouse DP. Use of a mental rotation reaction-time paradigm to measure the effects of upper cervical adjustments on cortical processing: a pilot study. J Manip Physiol Ther. 2000;23(4):246–51.CrossRef Kelly DD, Murphy BA, Backhouse DP. Use of a mental rotation reaction-time paradigm to measure the effects of upper cervical adjustments on cortical processing: a pilot study. J Manip Physiol Ther. 2000;23(4):246–51.CrossRef
30.
go back to reference Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRef Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRef
33.
go back to reference Bland JM, Altman DG. Comparisons against baseline within randomised groups are often used and can be highly misleading. Trials. 2011;12:264.CrossRef Bland JM, Altman DG. Comparisons against baseline within randomised groups are often used and can be highly misleading. Trials. 2011;12:264.CrossRef
34.
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol. 2015;126(6):1071–107.CrossRef Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol. 2015;126(6):1071–107.CrossRef
35.
go back to reference Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci. 2015;16(7):403–18.CrossRef Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci. 2015;16(7):403–18.CrossRef
36.
go back to reference Rossettini G, Carlino E, Testa M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet Disord. 2018;19(1):27.CrossRef Rossettini G, Carlino E, Testa M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet Disord. 2018;19(1):27.CrossRef
37.
go back to reference Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.CrossRef Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.CrossRef
38.
go back to reference Andrew D, Yielder P, Haavik H, Murphy B. The effects of subclinical neck pain on sensorimotor integration following a complex motor pursuit task. Exp Brain Res. 2018;236(1):1–11.CrossRef Andrew D, Yielder P, Haavik H, Murphy B. The effects of subclinical neck pain on sensorimotor integration following a complex motor pursuit task. Exp Brain Res. 2018;236(1):1–11.CrossRef
41.
go back to reference Haavik H. The reality check. A quest to understand chiropractic from the inside out. : Haavik research - heidihaavik.com; 2014. Haavik H. The reality check. A quest to understand chiropractic from the inside out. : Haavik research - heidihaavik.com; 2014.
Metadata
Title
Unravelling functional neurology: does spinal manipulation have an effect on the brain? - a systematic literature review
Authors
Anne-Laure Meyer
Michel-Ange Amorim
Martin Schubert
Petra Schweinhardt
Charlotte Leboeuf-Yde
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2019
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/s12998-019-0265-8

Other articles of this Issue 1/2019

Chiropractic & Manual Therapies 1/2019 Go to the issue