Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2019

Open Access 01-12-2019 | Research

Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system

Authors: Steen Harsted, Anders Holsgaard-Larsen, Lise Hestbæk, Eleanor Boyle, Henrik Hein Lauridsen

Published in: Chiropractic & Manual Therapies | Issue 1/2019

Login to get access

Abstract

Background

Investigations into the possible associations between early in life motor function and later in life musculoskeletal health, will require easily obtainable, valid, and reliable measures of gross motor function and kinematics. Marker-based motion capture systems provide reasonably valid and reliable measures, but recordings are restricted to expensive lab environments. Markerless motion capture systems can provide measures of gross motor function and kinematics outside of lab environments and with minimal interference to the subjects being investigated. It is, however, unknown if these measures are sufficiently valid and reliable in young children to warrant further use. This study aims to document the concurrent validity of a markerless motion capture system: “The Captury.”

Method

Measures of gross motor function and lower extremity kinematics from 14 preschool children (age between three and 6 years) performing a series of squats and standing broad jumps were recorded by a marker-based (Vicon) and a markerless (The Captury) motion capture system simultaneously, in December 2015. Measurement differences between the two systems were examined for the following variables: jump length, jump height, hip flexion, knee flexion, ankle dorsi flexion, knee varus, knee to hip separation distance ratio (KHR), ankle to hip separation distance ratio (AHR), frontal plane projection angle, frontal plane knee angle (FPKA), and frontal plane knee deviation (FPKD). Measurement differences between the systems were expressed in terms of root mean square errors, mean differences, limits of agreement (LOA), and intraclass correlations of absolute agreement (ICC (2,1) A) and consistency of agreement.

Results

Measurement differences between the two systems varied depending on the variables. Agreement and reliability ranged from acceptable for e.g. jump height [LOA: − 3.8 cm to 2.2 cm; ICC (2,1) A: 0.91] to unacceptable for knee varus [LOA: − 33° to 19°; ICC (2,1) A: 0.29].

Conclusions

The measurements by the markerless motion capture system “The Captury” cannot be considered interchangeable with the Vicon measures, but our results suggest that this system can produce estimates of jump length, jump height, KHR, AHR, knee flexion, FPKA, and FPKD, with acceptable levels of agreement and reliability. These variables are promising for use in future research but require further investigation of their clinimetric properties.
Literature
1.
go back to reference Leardini A, Chiari L, Croce UD, Cappozzo A. Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005;21:212–25.CrossRef Leardini A, Chiari L, Croce UD, Cappozzo A. Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005;21:212–25.CrossRef
2.
go back to reference Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry: part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21:226–37.CrossRef Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry: part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21:226–37.CrossRef
3.
go back to reference Chiari L, Croce UD, Leardini A, Cappozzo A. Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors, vol. 21. Clare: Elsevier B.V; 2005. p. 197–211. Chiari L, Croce UD, Leardini A, Cappozzo A. Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors, vol. 21. Clare: Elsevier B.V; 2005. p. 197–211.
4.
go back to reference Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry: Part 1: theoretical background, vol. 21. Clare: Elsevier B.V; 2005. p. 186–96. Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry: Part 1: theoretical background, vol. 21. Clare: Elsevier B.V; 2005. p. 186–96.
5.
go back to reference Mackey AH, Walt SE, Lobb GA, Stott NS. Reliability of upper and lower limb three-dimensional kinematics in children with hemiplegia. Gait Posture. 2005;22:1–9.CrossRef Mackey AH, Walt SE, Lobb GA, Stott NS. Reliability of upper and lower limb three-dimensional kinematics in children with hemiplegia. Gait Posture. 2005;22:1–9.CrossRef
6.
go back to reference Steinwender G, Saraph V, Scheiber S, Zwick EB, Uitz C, Hackl K. Intrasubject repeatability of gait analysis data in normal and spastic children. Clin Biomech (Bristol, Avon). 2000;15:134–9.CrossRef Steinwender G, Saraph V, Scheiber S, Zwick EB, Uitz C, Hackl K. Intrasubject repeatability of gait analysis data in normal and spastic children. Clin Biomech (Bristol, Avon). 2000;15:134–9.CrossRef
7.
go back to reference Colyer SL, Evans M, Cosker DP, Salo AIT. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a Markerless system. Sports Med Open. 2018;4:24.CrossRef Colyer SL, Evans M, Cosker DP, Salo AIT. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a Markerless system. Sports Med Open. 2018;4:24.CrossRef
8.
go back to reference Mundermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil. 2006;3:6.CrossRef Mundermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil. 2006;3:6.CrossRef
9.
go back to reference Simon SR. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech. 2004;37:1869–80.CrossRef Simon SR. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech. 2004;37:1869–80.CrossRef
10.
go back to reference Corazza S, Mundermann L, Chaudhari AM, Demattio T, Cobelli C, Andriacchi TP. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng. 2006;34:1019–29.CrossRef Corazza S, Mundermann L, Chaudhari AM, Demattio T, Cobelli C, Andriacchi TP. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng. 2006;34:1019–29.CrossRef
11.
go back to reference Sandau M, Koblauch H, Moeslund TB, Aanaes H, Alkjaer T, Simonsen EB. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane. Med Eng Phys. 2014;36:1168–75.CrossRef Sandau M, Koblauch H, Moeslund TB, Aanaes H, Alkjaer T, Simonsen EB. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane. Med Eng Phys. 2014;36:1168–75.CrossRef
12.
go back to reference Perrott MA, Pizzari T, Cook J, McClelland JA. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems. Gait Posture. 2017;52:57–61.CrossRef Perrott MA, Pizzari T, Cook J, McClelland JA. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems. Gait Posture. 2017;52:57–61.CrossRef
14.
go back to reference Leppanen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Ayramo S, Krosshaug T, Bahr R, Avela J, Perttunen J, Parkkari J. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2017;45:386–93.CrossRef Leppanen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Ayramo S, Krosshaug T, Bahr R, Avela J, Perttunen J, Parkkari J. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2017;45:386–93.CrossRef
15.
go back to reference Krosshaug T, Steffen K, Kristianslund E, Nilstad A, Mok KM, Myklebust G, Andersen TE, Holme I, Engebretsen L, Bahr R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44:874–83.CrossRef Krosshaug T, Steffen K, Kristianslund E, Nilstad A, Mok KM, Myklebust G, Andersen TE, Holme I, Engebretsen L, Bahr R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44:874–83.CrossRef
16.
go back to reference Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.CrossRef Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.CrossRef
17.
go back to reference Fjortoft I, Pedersen AV, Sigmundsson H, Vereijken B. Measuring physical fitness in children who are 5 to 12 years old with a test battery that is functional and easy to administer. Phys Ther. 2011;91:1087–95.CrossRef Fjortoft I, Pedersen AV, Sigmundsson H, Vereijken B. Measuring physical fitness in children who are 5 to 12 years old with a test battery that is functional and easy to administer. Phys Ther. 2011;91:1087–95.CrossRef
18.
go back to reference Hands B. Changes in motor skill and fitness measures among children with high and low motor competence: a five-year longitudinal study. J Sci Med Sport. 2008;11:155–62.CrossRef Hands B. Changes in motor skill and fitness measures among children with high and low motor competence: a five-year longitudinal study. J Sci Med Sport. 2008;11:155–62.CrossRef
20.
go back to reference Miller F, Castagno P, Richards J, Lennon N, Quigley E, Niiler T. Reliability of kinematics during clinical gait analysis: a comparison between normal and children with cerebal palsy. Gait Posture. 1996;4:169–70.CrossRef Miller F, Castagno P, Richards J, Lennon N, Quigley E, Niiler T. Reliability of kinematics during clinical gait analysis: a comparison between normal and children with cerebal palsy. Gait Posture. 1996;4:169–70.CrossRef
21.
go back to reference Rasmussen HM, Nielsen DB, Pedersen NW, Overgaard S, Holsgaard-Larsen A. Gait deviation index, gait profile score and gait variable score in children with spastic cerebral palsy: intra-rater reliability and agreement across two repeated sessions. Gait Posture. 2015;42:133–7.CrossRef Rasmussen HM, Nielsen DB, Pedersen NW, Overgaard S, Holsgaard-Larsen A. Gait deviation index, gait profile score and gait variable score in children with spastic cerebral palsy: intra-rater reliability and agreement across two repeated sessions. Gait Posture. 2015;42:133–7.CrossRef
24.
go back to reference Bottino A, Laurentini A. The visual hull of smooth curved objects. IEEE Trans Pattern Anal Mach Intell. 2004;26:1622–32.CrossRef Bottino A, Laurentini A. The visual hull of smooth curved objects. IEEE Trans Pattern Anal Mach Intell. 2004;26:1622–32.CrossRef
25.
go back to reference Piccardi M. Background subtraction techniques: a review. IEEE Int Conf Syst Man Cybern. 2004;4:3099–104. Piccardi M. Background subtraction techniques: a review. IEEE Int Conf Syst Man Cybern. 2004;4:3099–104.
26.
go back to reference Stoll C, Hasler N, Gall J, Seidel H-P, Theobalt C. Fast articulated motion tracking using a sums of Gaussians body model. In: IEEE International Conference on Computer Vision, vol. 2011; 2011. p. 951–8. Stoll C, Hasler N, Gall J, Seidel H-P, Theobalt C. Fast articulated motion tracking using a sums of Gaussians body model. In: IEEE International Conference on Computer Vision, vol. 2011; 2011. p. 951–8.
28.
go back to reference Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92.CrossRef Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92.CrossRef
29.
go back to reference Van der Worp H, de Poel HJ, Diercks RL, van den Akker-Scheek I, Zwerver J. Jumper's knee or lander's knee? A systematic review of the relation between jump biomechanics and patellar tendinopathy. Int J Sports Med. 2014;35:714–22.CrossRef Van der Worp H, de Poel HJ, Diercks RL, van den Akker-Scheek I, Zwerver J. Jumper's knee or lander's knee? A systematic review of the relation between jump biomechanics and patellar tendinopathy. Int J Sports Med. 2014;35:714–22.CrossRef
30.
go back to reference Ortiz A, Rosario-Canales M, Rodriguez A, Seda A, Figueroa C, Venegas-Rios HL. Reliability and concurrent validity between two-dimensional and three-dimensional evaluations of knee valgus during drop jumps. Open Access J Sports Med. 2016;7:65–73.CrossRef Ortiz A, Rosario-Canales M, Rodriguez A, Seda A, Figueroa C, Venegas-Rios HL. Reliability and concurrent validity between two-dimensional and three-dimensional evaluations of knee valgus during drop jumps. Open Access J Sports Med. 2016;7:65–73.CrossRef
31.
go back to reference Stone EE, Butler M, McRuer A, Gray A, Marks J, Skubic M. Evaluation of the Microsoft Kinect for screening ACL injury. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4152–5.PubMed Stone EE, Butler M, McRuer A, Gray A, Marks J, Skubic M. Evaluation of the Microsoft Kinect for screening ACL injury. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4152–5.PubMed
32.
go back to reference Willson JD, Davis IS. Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther. 2008;38:606–15.CrossRef Willson JD, Davis IS. Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther. 2008;38:606–15.CrossRef
33.
go back to reference Raisanen AM, Pasanen K, Krosshaug T, Vasankari T, Kannus P, Heinonen A, Kujala UM, Avela J, Perttunen J, Parkkari J. Association between frontal plane knee control and lower extremity injuries: a prospective study on young team sport athletes. BMJ Open Sport Exerc Med. 2018;4:e000311.CrossRef Raisanen AM, Pasanen K, Krosshaug T, Vasankari T, Kannus P, Heinonen A, Kujala UM, Avela J, Perttunen J, Parkkari J. Association between frontal plane knee control and lower extremity injuries: a prospective study on young team sport athletes. BMJ Open Sport Exerc Med. 2018;4:e000311.CrossRef
34.
go back to reference Gwynne CR, Curran SA. Quantifying frontal plane knee motion during single limb squats: reliability and validity of 2-dimensional measures. Int J Sports Phys Ther. 2014;9:898–906.PubMedPubMedCentral Gwynne CR, Curran SA. Quantifying frontal plane knee motion during single limb squats: reliability and validity of 2-dimensional measures. Int J Sports Phys Ther. 2014;9:898–906.PubMedPubMedCentral
35.
go back to reference Barber-Westin SD, Galloway M, Noyes FR, Corbett G, Walsh C. Assessment of lower limb neuromuscular control in prepubescent athletes. Am J Sports Med. 2005;33:1853–60.CrossRef Barber-Westin SD, Galloway M, Noyes FR, Corbett G, Walsh C. Assessment of lower limb neuromuscular control in prepubescent athletes. Am J Sports Med. 2005;33:1853–60.CrossRef
36.
go back to reference Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33:197–207.CrossRef Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33:197–207.CrossRef
37.
go back to reference Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, Roberts C, Shoukri M, Streiner DL. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.CrossRef Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, Roberts C, Shoukri M, Streiner DL. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.CrossRef
38.
go back to reference Rodrigues G. Defining accuracy and precision. MLO Med Lab Obs. 2007;39(20):22. Rodrigues G. Defining accuracy and precision. MLO Med Lab Obs. 2007;39(20):22.
39.
go back to reference Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17:571–82.CrossRef Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17:571–82.CrossRef
40.
go back to reference McGraw KO, Wong SP. Forming inferences about some Intraclass correlation coefficients. Psychol Methods. 1996;1:30–46.CrossRef McGraw KO, Wong SP. Forming inferences about some Intraclass correlation coefficients. Psychol Methods. 1996;1:30–46.CrossRef
42.
go back to reference Hesterberg T. Bootstrap. Wiley Interdiscip Rev Comput Stat. 2011;3:497–526.CrossRef Hesterberg T. Bootstrap. Wiley Interdiscip Rev Comput Stat. 2011;3:497–526.CrossRef
43.
go back to reference Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1--correlation within subjects. BMJ. 1995;310:446.CrossRef Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1--correlation within subjects. BMJ. 1995;310:446.CrossRef
44.
go back to reference Baker R, Leboeuf F, Reay J, Sangeux M. The conventional gait model - success and limitations. In: Handbook of human motion. Cham: Springer International Publishing; 2018. p. 489–508.CrossRef Baker R, Leboeuf F, Reay J, Sangeux M. The conventional gait model - success and limitations. In: Handbook of human motion. Cham: Springer International Publishing; 2018. p. 489–508.CrossRef
45.
go back to reference Camomilla V, Cappozzo A, Vannozzi G. Three-dimensional reconstruction of the human skeleton in motion. In: Handbook of human motion. Cham: Springer International Publishing; 2018. p. 17–45.CrossRef Camomilla V, Cappozzo A, Vannozzi G. Three-dimensional reconstruction of the human skeleton in motion. In: Handbook of human motion. Cham: Springer International Publishing; 2018. p. 17–45.CrossRef
46.
go back to reference Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24:152–64.CrossRef Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24:152–64.CrossRef
47.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63.CrossRef Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63.CrossRef
48.
go back to reference R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
53.
go back to reference Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.CrossRef Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.CrossRef
55.
go back to reference Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.CrossRef
56.
go back to reference Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.CrossRef Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.CrossRef
57.
go back to reference Xie Y. knitr: A Comprehensive Tool for Reproducible Research in R. In: Stodden V, Leisch F, Peng RD, editors. Implementing Reproducible Computational Research: Chapman and Hall/CRC; 2014. Xie Y. knitr: A Comprehensive Tool for Reproducible Research in R. In: Stodden V, Leisch F, Peng RD, editors. Implementing Reproducible Computational Research: Chapman and Hall/CRC; 2014.
60.
go back to reference Tsai TY, Lu TW, Kuo MY, Lin CC. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech. 2011;44:1182–8.CrossRef Tsai TY, Lu TW, Kuo MY, Lin CC. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech. 2011;44:1182–8.CrossRef
61.
go back to reference Stagni R. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech (Bristol). 2005;20:320–9.CrossRef Stagni R. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech (Bristol). 2005;20:320–9.CrossRef
62.
go back to reference Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One. 2014;9:e87640.CrossRef Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One. 2014;9:e87640.CrossRef
63.
go back to reference Mizner RL, Chmielewski TL, Toepke JJ, Tofte KB. Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med. 2012;22:221–7.CrossRef Mizner RL, Chmielewski TL, Toepke JJ, Tofte KB. Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med. 2012;22:221–7.CrossRef
64.
go back to reference Schurr SA, Marshall AN, Resch JE, Saliba SA. Two-dimensional video analysis is comparable to 3D motion capture in lower extremity movement assesment. Int J Sports Phys Ther. 2017;12:163–72.PubMedPubMedCentral Schurr SA, Marshall AN, Resch JE, Saliba SA. Two-dimensional video analysis is comparable to 3D motion capture in lower extremity movement assesment. Int J Sports Phys Ther. 2017;12:163–72.PubMedPubMedCentral
Metadata
Title
Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system
Authors
Steen Harsted
Anders Holsgaard-Larsen
Lise Hestbæk
Eleanor Boyle
Henrik Hein Lauridsen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2019
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/s12998-019-0261-z

Other articles of this Issue 1/2019

Chiropractic & Manual Therapies 1/2019 Go to the issue