Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2018

Open Access 01-12-2018 | Research

Characteristics of the cerebrospinal fluid pressure waveform and craniospinal compliance in idiopathic intracranial hypertension subjects

Authors: Monica D. Okon, Cynthia J. Roberts, Ashraf M. Mahmoud, Andrew N. Springer, Robert H. Small, John M. McGregor, Steven E. Katz

Published in: Fluids and Barriers of the CNS | Issue 1/2018

Login to get access

Abstract

Background

Idiopathic intracranial hypertension (IIH) is a condition of abnormally high intracranial pressure with an unknown etiology. The objective of this study is to characterize craniospinal compliance and measure the cerebrospinal fluid (CSF) pressure waveform as CSF is passively drained during a diagnostic and therapeutic lumbar puncture (LP) in IIH.

Methods

Eighteen subjects who met the Modified Dandy Criteria, including papilledema and visual field loss, received an ultrasound guided LP where CSF pressure (CSFP) was recorded at each increment of CSF removal. Joinpoint regression models were used to calculate compliance from CSF pressure and the corresponding volume removed at each increment for each subject. Twelve subjects had their CSFP waveform recorded with an electronic transducer. Body mass index, mean CSFP, and cerebral perfusion pressure (CPP) were also calculated. T-tests were used to compare measurements, and correlations were performed between parameters.

Results

Cerebrospinal fluid pressure, CSFP pulse amplitude (CPA), and CPP were found to be significantly different (p < 0.05) before and after the LP. CSFP and CPA decreased after the LP, while CPP increased. The craniospinal compliance significantly increased (p < 0.05) post-LP. CPA and CSFP were significantly positively correlated.

Conclusions

Both low craniospinal compliance (at high CSFP) and high craniospinal compliance (at low CSFP) regions were determined. The CSFP waveform morphology in IIH was characterized and CPA was found to be positively correlated to the magnitude of CSFP. Future studies will investigate how craniospinal compliance may correlate to symptoms and/or response to therapy in IIH subjects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alperin N, Lam BL, Tain RW, et al. Evidence for altered spinal canal compliance and cerebral venous drainage in untreated idiopathic intracranial hypertension. Acta Neurochir Suppl. 2012;114:201–5.CrossRefPubMed Alperin N, Lam BL, Tain RW, et al. Evidence for altered spinal canal compliance and cerebral venous drainage in untreated idiopathic intracranial hypertension. Acta Neurochir Suppl. 2012;114:201–5.CrossRefPubMed
2.
go back to reference Alperin N, Ranganathan S, Bagci AM, et al. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34(1):29–34.CrossRefPubMed Alperin N, Ranganathan S, Bagci AM, et al. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34(1):29–34.CrossRefPubMed
3.
go back to reference Yuh EL, Dillon WP. Intracranial hypotension and intracranial hypertension. Neuroimaging Clin N Am. 2010;20(4):597–617.CrossRefPubMed Yuh EL, Dillon WP. Intracranial hypotension and intracranial hypertension. Neuroimaging Clin N Am. 2010;20(4):597–617.CrossRefPubMed
4.
go back to reference Biousse V, Bruce BB, Newman NJ. Update on the pathophysiology and management of idiopathic intracranial hypertension. J Neurol Neurosurg Psychiatry. 2012;83(5):488–94.CrossRefPubMedPubMedCentral Biousse V, Bruce BB, Newman NJ. Update on the pathophysiology and management of idiopathic intracranial hypertension. J Neurol Neurosurg Psychiatry. 2012;83(5):488–94.CrossRefPubMedPubMedCentral
5.
go back to reference Passi N, Degnan AJ, Levy LM. MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms. AJNR Am J Neuroradiol. 2013;34(5):919–24.CrossRefPubMed Passi N, Degnan AJ, Levy LM. MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms. AJNR Am J Neuroradiol. 2013;34(5):919–24.CrossRefPubMed
6.
go back to reference Feldon SE. Visual outcomes comparing surgical techniques for management of severe idiopathic intracranial hypertension. Neurosurg Focus. 2007;23(5):E6.CrossRefPubMed Feldon SE. Visual outcomes comparing surgical techniques for management of severe idiopathic intracranial hypertension. Neurosurg Focus. 2007;23(5):E6.CrossRefPubMed
7.
go back to reference Wall M, Kupersmith MJ, Kieburtz KD, et al. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol. 2014;71(6):693–701.CrossRefPubMedPubMedCentral Wall M, Kupersmith MJ, Kieburtz KD, et al. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol. 2014;71(6):693–701.CrossRefPubMedPubMedCentral
8.
go back to reference Lueck C, McIlwaine G. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev. 2005;3(3):CD003434. Lueck C, McIlwaine G. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev. 2005;3(3):CD003434.
10.
go back to reference Löfgren J, Essen CV, Zwetnow NN. The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand. 1973;49(4):557–74.CrossRefPubMed Löfgren J, Essen CV, Zwetnow NN. The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand. 1973;49(4):557–74.CrossRefPubMed
11.
go back to reference Statistical Methodology and Application Branch. Joinpoint regression program, version 4.5.0.1; 2017. Statistical Methodology and Application Branch. Joinpoint regression program, version 4.5.0.1; 2017.
13.
go back to reference Kasprowicz M, Czosnyka M, Czosnyka Z, et al. Hysteresis of the cerebrospinal pressure-volume curve in hydrocephalus. Acta Neurochir Suppl. 2003;86:529–32.PubMed Kasprowicz M, Czosnyka M, Czosnyka Z, et al. Hysteresis of the cerebrospinal pressure-volume curve in hydrocephalus. Acta Neurochir Suppl. 2003;86:529–32.PubMed
14.
go back to reference Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg. 1987;67(6):832–40.CrossRefPubMed Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg. 1987;67(6):832–40.CrossRefPubMed
15.
go back to reference Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27(2):317–24.CrossRefPubMed Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27(2):317–24.CrossRefPubMed
16.
go back to reference Czosnyka M, Czosnyka Z, Keong N, et al. Pulse pressure waveform in hydrocephalus: what it is and what it isn’t. Neurosurg Focus. 2007;22(4):E2.CrossRefPubMed Czosnyka M, Czosnyka Z, Keong N, et al. Pulse pressure waveform in hydrocephalus: what it is and what it isn’t. Neurosurg Focus. 2007;22(4):E2.CrossRefPubMed
17.
go back to reference Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. the normal pressure-volume index. Ann Neurol. 1980;7(6):508–14.CrossRefPubMed Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. the normal pressure-volume index. Ann Neurol. 1980;7(6):508–14.CrossRefPubMed
18.
go back to reference Sklar FH, Beyer CW Jr, Clark WK. Physiological features of the pressure-volume function of brain elasticity in man. J Neurosurg. 1980;53(2):166–72.CrossRefPubMed Sklar FH, Beyer CW Jr, Clark WK. Physiological features of the pressure-volume function of brain elasticity in man. J Neurosurg. 1980;53(2):166–72.CrossRefPubMed
19.
go back to reference Sklar FH, Diehl JT, Beyer CW Jr, Clark WK. Brain elasticity changes with ventriculomegaly. J Neurosurg. 1980;53(2):173–9.CrossRefPubMed Sklar FH, Diehl JT, Beyer CW Jr, Clark WK. Brain elasticity changes with ventriculomegaly. J Neurosurg. 1980;53(2):173–9.CrossRefPubMed
20.
go back to reference Smielewski P, Czosnyka M, Roszkowski M, Walencik A. Identification of the cerebrospinal compensatory mechanisms via computer-controlled drainage of the cerebrospinal fluid. Childs Nerv Syst. 1995;11(5):297–300.CrossRefPubMed Smielewski P, Czosnyka M, Roszkowski M, Walencik A. Identification of the cerebrospinal compensatory mechanisms via computer-controlled drainage of the cerebrospinal fluid. Childs Nerv Syst. 1995;11(5):297–300.CrossRefPubMed
21.
go back to reference J Löfgren, Zwetnow NN. Cranial and spinal components of the cerebrospinal fluid pressure-volume curve. Acta Neurol Scand. 1973;49(5):575–85. J Löfgren, Zwetnow NN. Cranial and spinal components of the cerebrospinal fluid pressure-volume curve. Acta Neurol Scand. 1973;49(5):575–85.
22.
go back to reference Anile C, Portnoy HD, Branch C. Intracranial compliance is time-dependent. Neurosurgery. 1987;20(3):389–95.CrossRefPubMed Anile C, Portnoy HD, Branch C. Intracranial compliance is time-dependent. Neurosurgery. 1987;20(3):389–95.CrossRefPubMed
23.
go back to reference Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43(5):523–34.CrossRefPubMed Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43(5):523–34.CrossRefPubMed
24.
go back to reference Bruce BB. Noninvasive assessment of cerebrospinal fluid pressure. J Neuro Ophthalmol. 2014;34(3):288–94.CrossRef Bruce BB. Noninvasive assessment of cerebrospinal fluid pressure. J Neuro Ophthalmol. 2014;34(3):288–94.CrossRef
25.
go back to reference Eklund A, Smielewski P, Chambers I, et al. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007;45(8):719–35.CrossRefPubMed Eklund A, Smielewski P, Chambers I, et al. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007;45(8):719–35.CrossRefPubMed
27.
go back to reference Tain R, Bagci AM, Lam BL, Sklar EM, Ertl-Wagner B, Alperin N. Determination of cranio-spinal canal compliance distribution by MRI: methodology and early application in idiopathic intracranial hypertension. J Magn Reson Imaging. 2011;34(6):1397–404.CrossRefPubMedPubMedCentral Tain R, Bagci AM, Lam BL, Sklar EM, Ertl-Wagner B, Alperin N. Determination of cranio-spinal canal compliance distribution by MRI: methodology and early application in idiopathic intracranial hypertension. J Magn Reson Imaging. 2011;34(6):1397–404.CrossRefPubMedPubMedCentral
28.
go back to reference Anile C, De Bonis P, Mangiola A, Mannino S, Santini P. A new method of estimating intracranial elastance. Interdiscip Neurosurg. 2014;1(2):26–30.CrossRef Anile C, De Bonis P, Mangiola A, Mannino S, Santini P. A new method of estimating intracranial elastance. Interdiscip Neurosurg. 2014;1(2):26–30.CrossRef
29.
go back to reference Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125:1493–1503.CrossRefPubMed Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125:1493–1503.CrossRefPubMed
30.
go back to reference Adolph R, Fukusumi H, Fowler N. Origin of cerebrospinal fluid pulsations. Am J Physiol Legacy Content. 1967;212(4):840–6.CrossRef Adolph R, Fukusumi H, Fowler N. Origin of cerebrospinal fluid pulsations. Am J Physiol Legacy Content. 1967;212(4):840–6.CrossRef
31.
go back to reference Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.CrossRefPubMed Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.CrossRefPubMed
32.
go back to reference Szewczykowski J, liwka S, Kunicki A, Dytko P, Korsak-liwka J. A fast method of estimating the elastance of the intracranial system. J Neurosurg. 1977;47(1):19–26.CrossRefPubMed Szewczykowski J, liwka S, Kunicki A, Dytko P, Korsak-liwka J. A fast method of estimating the elastance of the intracranial system. J Neurosurg. 1977;47(1):19–26.CrossRefPubMed
33.
go back to reference Avezaat CJ, van Eijndhoven JH, Wyper DJ. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatr. 1979;42(8):687–700.CrossRef Avezaat CJ, van Eijndhoven JH, Wyper DJ. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatr. 1979;42(8):687–700.CrossRef
34.
go back to reference Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138(5):531–41 (discussion 541-2).CrossRefPubMed Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138(5):531–41 (discussion 541-2).CrossRefPubMed
35.
go back to reference Qvarlander S, Malm J, Eklund A. The pulsatility curve—the relationship between mean intracranial pressure and pulsation amplitude. Inst Phys Eng Med. 2010;31(11):1517. Qvarlander S, Malm J, Eklund A. The pulsatility curve—the relationship between mean intracranial pressure and pulsation amplitude. Inst Phys Eng Med. 2010;31(11):1517.
36.
go back to reference Qvarlander S, Lundkvist B, Koskinen LD, Malm J, Eklund A. Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr. 2013;84(7):735.CrossRef Qvarlander S, Lundkvist B, Koskinen LD, Malm J, Eklund A. Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr. 2013;84(7):735.CrossRef
37.
go back to reference Qvarlander S, Malm J, Eklund A. CSF dynamic analysis of a predictive pulsatility-based infusion test for normal pressure hydrocephalus. Med Biol Eng Comput. 2014;52(1):75–85.CrossRefPubMed Qvarlander S, Malm J, Eklund A. CSF dynamic analysis of a predictive pulsatility-based infusion test for normal pressure hydrocephalus. Med Biol Eng Comput. 2014;52(1):75–85.CrossRefPubMed
38.
go back to reference Eide PK, Kerty E. Static and pulsatile intracranial pressure in idiopathic intracranial hypertension. Clin Neurol Neurosurg. 2011;113(2):123–8.CrossRefPubMed Eide PK, Kerty E. Static and pulsatile intracranial pressure in idiopathic intracranial hypertension. Clin Neurol Neurosurg. 2011;113(2):123–8.CrossRefPubMed
Metadata
Title
Characteristics of the cerebrospinal fluid pressure waveform and craniospinal compliance in idiopathic intracranial hypertension subjects
Authors
Monica D. Okon
Cynthia J. Roberts
Ashraf M. Mahmoud
Andrew N. Springer
Robert H. Small
John M. McGregor
Steven E. Katz
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2018
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-018-0106-5

Other articles of this Issue 1/2018

Fluids and Barriers of the CNS 1/2018 Go to the issue