Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2018

Open Access 01-12-2018 | Research

Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis

Authors: Edward G. Stopa, Keith Q. Tanis, Miles C. Miller, Elena V. Nikonova, Alexei A. Podtelezhnikov, Eva M. Finney, David J. Stone, Luiz M. Camargo, Lisan Parker, Ajay Verma, Andrew Baird, John E. Donahue, Tara Torabi, Brian P. Eliceiri, Gerald D. Silverberg, Conrad E. Johanson

Published in: Fluids and Barriers of the CNS | Issue 1/2018

Login to get access

Abstract

Background

In Alzheimer’s disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood–cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states.

Methods

Transcriptome-wide Affymetrix microarrays were used to determine disease-related changes in gene expression in human CP. RNA from post-mortem samples of the entire lateral ventricular choroid plexus was extracted from 6 healthy controls (Ctrl), 7 patients with advanced (Braak and Braak stage III–VI) Alzheimer’s disease (AD), 4 with frontotemporal dementia (FTD) and 3 with Huntington’s disease (HuD). Statistics and agglomerative clustering were accomplished with MathWorks, MatLab; and gene set annotations by comparing input sets to GeneGo (http://​www.​genego.​com) and Ingenuity (http://​www.​ingenuity.​com) pathway sets. Bonferroni-corrected hypergeometric p-values of < 0.1 were considered a significant overlap between sets.

Results

Pronounced differences in gene expression occurred in CP of advanced AD patients vs. Ctrls. Metabolic and immune-related pathways including acute phase response, cytokine, cell adhesion, interferons, and JAK-STAT as well as mTOR were significantly enriched among the genes upregulated. Methionine degradation, claudin-5 and protein translation genes were downregulated. Many gene expression changes in AD patients were observed in FTD and HuD (e.g., claudin-5, tight junction downregulation), but there were significant differences between the disease groups. In AD and HuD (but not FTD), several neuroimmune-modulating interferons were significantly enriched (e.g., in AD: IFI-TM1, IFN-AR1, IFN-AR2, and IFN-GR2). AD-associated expression changes, but not those in HuD and FTD, were enriched for upregulation of VEGF signaling and immune response proteins, e.g., interleukins. HuD and FTD patients distinctively displayed upregulated cadherin-mediated adhesion.

Conclusions

Our transcript data for human CP tissue provides genomic and mechanistic insight for differential expression in AD vs. FTD vs. HuD for stromal as well as epithelial components. These choroidal transcriptome characterizations elucidate immune activation, tissue functional resiliency, and CSF metabolic homeostasis. The BCSFB undergoes harmful, but also important functional and adaptive changes in neurodegenerative diseases; accordingly, the enriched JAK-STAT and mTOR pathways, respectively, likely help the CP in adaptive transcription and epithelial repair and/or replacement when harmed by neurodegeneration pathophysiology. We anticipate that these precise CP translational data will facilitate pharmacologic/transgenic therapies to alleviate dementia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, Baird A, Johanson CE. Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol. 2001;167(1):40–7.CrossRefPubMed Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, Baird A, Johanson CE. Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol. 2001;167(1):40–7.CrossRefPubMed
2.
go back to reference Davson H, Segal M. Physiology of the CSF and blood–brain barriers. Boca Raton: CRC; 1996. p. 822. Davson H, Segal M. Physiology of the CSF and blood–brain barriers. Boca Raton: CRC; 1996. p. 822.
3.
go back to reference Johanson CE, Stopa E, McMillan PN. The blood–cerebrospinal fluid barrier: structure and functional significance. In: Nag S, editor. The blood–brain and other neural barriers, vol. 686. New York: Springer; 2011. p. 475. Johanson CE, Stopa E, McMillan PN. The blood–cerebrospinal fluid barrier: structure and functional significance. In: Nag S, editor. The blood–brain and other neural barriers, vol. 686. New York: Springer; 2011. p. 475.
4.
go back to reference Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology. 1999;140(1):520–32.CrossRefPubMed Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology. 1999;140(1):520–32.CrossRefPubMed
5.
go back to reference Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M, Palha JA. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis. 2017;107:32–40.CrossRefPubMed Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M, Palha JA. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis. 2017;107:32–40.CrossRefPubMed
6.
go back to reference Strazielle N, Khuth ST, Ghersi-Egea JF. Detoxification systems, passive and specific transport for drugs at the blood–CSF barrier in normal and pathological situations. Adv Drug Deliv Rev. 2004;56(12):1717–40.CrossRefPubMed Strazielle N, Khuth ST, Ghersi-Egea JF. Detoxification systems, passive and specific transport for drugs at the blood–CSF barrier in normal and pathological situations. Adv Drug Deliv Rev. 2004;56(12):1717–40.CrossRefPubMed
7.
8.
go back to reference Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer’s disease: more than just a barrier. Neural Regen Res. 2016;11(4):534–7.CrossRefPubMedPubMedCentral Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer’s disease: more than just a barrier. Neural Regen Res. 2016;11(4):534–7.CrossRefPubMedPubMedCentral
9.
go back to reference Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4):497–511.CrossRefPubMed Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4):497–511.CrossRefPubMed
10.
go back to reference Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23.CrossRefPubMed Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23.CrossRefPubMed
12.
go back to reference Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(1):7–22.CrossRefPubMed Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(1):7–22.CrossRefPubMed
13.
go back to reference Schwartz M, Deczkowska A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 2016;37(10):668–79.CrossRefPubMed Schwartz M, Deczkowska A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 2016;37(10):668–79.CrossRefPubMed
15.
go back to reference Vercellino M, Votta B, Condello C, Piacentino C, Romagnolo A, Merola A, Capello E, Mancardi GL, Mutani R, Giordana MT, et al. Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol. 2008;199(1–2):133–41.CrossRefPubMed Vercellino M, Votta B, Condello C, Piacentino C, Romagnolo A, Merola A, Capello E, Mancardi GL, Mutani R, Giordana MT, et al. Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol. 2008;199(1–2):133–41.CrossRefPubMed
18.
go back to reference Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, Sousa N, Correia-Neves M, Palha JA. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. 2009;29(5):921–32.CrossRefPubMed Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, Sousa N, Correia-Neves M, Palha JA. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. 2009;29(5):921–32.CrossRefPubMed
19.
go back to reference Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E. Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg. 2002;97(6):1271–5.CrossRefPubMed Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E. Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg. 2002;97(6):1271–5.CrossRefPubMed
20.
go back to reference Serot JM, Bene MC, Faure GC. Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci. 2003;8:s515–21.CrossRefPubMed Serot JM, Bene MC, Faure GC. Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci. 2003;8:s515–21.CrossRefPubMed
21.
go back to reference Gorlé N, Van Cauwenberghe C, Libert C, Vandenbroucke RE. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm Genome. 2016;27(7–8):407–20.CrossRefPubMed Gorlé N, Van Cauwenberghe C, Libert C, Vandenbroucke RE. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm Genome. 2016;27(7–8):407–20.CrossRefPubMed
22.
go back to reference Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res. 2004;1(1):3.CrossRefPubMedPubMedCentral Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res. 2004;1(1):3.CrossRefPubMedPubMedCentral
23.
go back to reference Oikonomidi A, Lewczuk P, Kornhuber J, Smulders Y, Linnebank M, Semmler A, Popp J. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. J Neurochem. 2016;139(2):324–32.CrossRefPubMed Oikonomidi A, Lewczuk P, Kornhuber J, Smulders Y, Linnebank M, Semmler A, Popp J. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. J Neurochem. 2016;139(2):324–32.CrossRefPubMed
24.
go back to reference González-Marrero I, Giménez-Llort L, Johanson CE, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci. 2015;9:17.CrossRefPubMedPubMedCentral González-Marrero I, Giménez-Llort L, Johanson CE, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci. 2015;9:17.CrossRefPubMedPubMedCentral
26.
go back to reference Bergen AA, Kaing S, ten Brink JB, Gorgels TG, Janssen SF, Bank NB. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics. 2015;16:956.CrossRefPubMedPubMedCentral Bergen AA, Kaing S, ten Brink JB, Gorgels TG, Janssen SF, Bank NB. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics. 2015;16:956.CrossRefPubMedPubMedCentral
28.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.CrossRefPubMed Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.CrossRefPubMed
30.
go back to reference Johanson C, Silverberg G, Donahue J, Duncan J, Stopa E. Choroid plexus and CSF in Alzheimer’s disease: altered expression and transport of proteins and peptides. London: CRC Press LLC; 2005. p. 307–39. Johanson C, Silverberg G, Donahue J, Duncan J, Stopa E. Choroid plexus and CSF in Alzheimer’s disease: altered expression and transport of proteins and peptides. London: CRC Press LLC; 2005. p. 307–39.
31.
go back to reference Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, Iqbal K. Blood-cerebrospinal fluid barrier permeability in Alzheimer’s disease. J Alzheimers Dis. 2011;25(3):505–15.CrossRefPubMedPubMedCentral Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, Iqbal K. Blood-cerebrospinal fluid barrier permeability in Alzheimer’s disease. J Alzheimers Dis. 2011;25(3):505–15.CrossRefPubMedPubMedCentral
32.
go back to reference Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S, et al. Amyloid β oligomers disrupt blood–CSF barrier integrity by activating matrix metalloproteinases. J Neurosci. 2015;35(37):12766–78.CrossRefPubMed Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S, et al. Amyloid β oligomers disrupt blood–CSF barrier integrity by activating matrix metalloproteinases. J Neurosci. 2015;35(37):12766–78.CrossRefPubMed
33.
go back to reference Podtelezhnikov AA, Tanis KQ, Nebozhyn M, Ray WJ, Stone DJ, Loboda AP. Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS ONE. 2011;6(12):e29610.CrossRefPubMedPubMedCentral Podtelezhnikov AA, Tanis KQ, Nebozhyn M, Ray WJ, Stone DJ, Loboda AP. Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS ONE. 2011;6(12):e29610.CrossRefPubMedPubMedCentral
34.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.CrossRefPubMed Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.CrossRefPubMed
35.
go back to reference Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M. IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 2013;136(Pt 11):3427–40.CrossRefPubMed Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M. IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 2013;136(Pt 11):3427–40.CrossRefPubMed
36.
go back to reference Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res. 2005;22(7):1011–37.CrossRefPubMed Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res. 2005;22(7):1011–37.CrossRefPubMed
37.
go back to reference Vallieres L, Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J Neurochem. 1997;69(4):1668–83.CrossRefPubMed Vallieres L, Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J Neurochem. 1997;69(4):1668–83.CrossRefPubMed
38.
go back to reference Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2015;49:280–92.CrossRefPubMed Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2015;49:280–92.CrossRefPubMed
39.
go back to reference Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, Stopa EG, Johanson CE. Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis. 2003;5(3):171–7.CrossRefPubMed Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, Stopa EG, Johanson CE. Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis. 2003;5(3):171–7.CrossRefPubMed
40.
go back to reference Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL. Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res. 1996;40(1):1–14.PubMed Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL. Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res. 1996;40(1):1–14.PubMed
41.
go back to reference Deane R, Wu Z, Zlokovic BV. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke J Cereb Circulation. 2004;35(11 Suppl 1):2628–31.CrossRef Deane R, Wu Z, Zlokovic BV. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke J Cereb Circulation. 2004;35(11 Suppl 1):2628–31.CrossRef
42.
go back to reference Silverberg G, Flaherty-Slone S, Messier A, Soltman S, Miller M, Szmydynger-Chodobska J, Chodobski A, Johanson C. Amyloid transporter expression is altered by aging at the blood–brain barrier and choroid plexus. In: Gordon Research Conference. Tilton: New Hampshire; 2006. Silverberg G, Flaherty-Slone S, Messier A, Soltman S, Miller M, Szmydynger-Chodobska J, Chodobski A, Johanson C. Amyloid transporter expression is altered by aging at the blood–brain barrier and choroid plexus. In: Gordon Research Conference. Tilton: New Hampshire; 2006.
43.
go back to reference Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014;50(2):534–44.CrossRefPubMedPubMedCentral Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014;50(2):534–44.CrossRefPubMedPubMedCentral
44.
go back to reference McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2016;58:191–200.CrossRefPubMed McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2016;58:191–200.CrossRefPubMed
45.
go back to reference Vates TS Jr, Bonting SL, Oppelt WW. Na–K activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol. 1964;206:1165–72.PubMed Vates TS Jr, Bonting SL, Oppelt WW. Na–K activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol. 1964;206:1165–72.PubMed
46.
go back to reference Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.CrossRefPubMedPubMedCentral Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.CrossRefPubMedPubMedCentral
47.
go back to reference Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood–CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21.CrossRefPubMedPubMedCentral Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood–CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21.CrossRefPubMedPubMedCentral
48.
go back to reference Kummer MP, Schwarzenberger R, Sayah-Jeanne S, Dubernet M, Walczak R, Hum DW, Schwartz S, Axt D, Heneka MT. Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol Neurobiol. 2014;51(2):661–71.CrossRefPubMedPubMedCentral Kummer MP, Schwarzenberger R, Sayah-Jeanne S, Dubernet M, Walczak R, Hum DW, Schwartz S, Axt D, Heneka MT. Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol Neurobiol. 2014;51(2):661–71.CrossRefPubMedPubMedCentral
49.
go back to reference Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008;205(2):491–501.CrossRefPubMedPubMedCentral Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008;205(2):491–501.CrossRefPubMedPubMedCentral
50.
go back to reference Turner ML. Cell adhesion molecules: a unifying approach to topographic biology. Biol Rev Camb Philos Soc. 1992;67(3):359–77.CrossRefPubMed Turner ML. Cell adhesion molecules: a unifying approach to topographic biology. Biol Rev Camb Philos Soc. 1992;67(3):359–77.CrossRefPubMed
51.
go back to reference Lobas MA, Helsper L, Vernon CG, Schreiner D, Zhang Y, Holtzman MJ, Thedens DR, Weiner JA. Molecular heterogeneity in the choroid plexus epithelium: the 22-member γ-protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation. J Neurochem. 2012;120(6):913–27.PubMed Lobas MA, Helsper L, Vernon CG, Schreiner D, Zhang Y, Holtzman MJ, Thedens DR, Weiner JA. Molecular heterogeneity in the choroid plexus epithelium: the 22-member γ-protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation. J Neurochem. 2012;120(6):913–27.PubMed
52.
go back to reference Keep RF, Xiang J, Andjelkovic AV. Where did the ventricles go? J Neurochem. 2012;120(6):851–2.PubMed Keep RF, Xiang J, Andjelkovic AV. Where did the ventricles go? J Neurochem. 2012;120(6):851–2.PubMed
53.
go back to reference Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P. Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest J Tech Methods Pathol. 1999;79(10):1247–59. Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P. Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest J Tech Methods Pathol. 1999;79(10):1247–59.
54.
go back to reference Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998;55(11):1449–55.CrossRefPubMed Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998;55(11):1449–55.CrossRefPubMed
55.
go back to reference McCaddon A, Davies G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry. 1998;13(4):235–9.CrossRefPubMed McCaddon A, Davies G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry. 1998;13(4):235–9.CrossRefPubMed
56.
go back to reference Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.CrossRefPubMed Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.CrossRefPubMed
57.
go back to reference Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer’s disease: a systematic review. Arch Gerontol Geriatr. 2009;48(3):425–30.CrossRefPubMed Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer’s disease: a systematic review. Arch Gerontol Geriatr. 2009;48(3):425–30.CrossRefPubMed
58.
go back to reference McCampbell A, Wessner K, Marlatt MW, Wolffe C, Toolan D, Podtelezhnikov A, Yeh S, Zhang R, Szczerba P, Tanis KQ, et al. Induction of Alzheimer’s-like changes in brain of mice expressing mutant APP fed excess methionine. J Neurochem. 2011;116(1):82–92.CrossRefPubMed McCampbell A, Wessner K, Marlatt MW, Wolffe C, Toolan D, Podtelezhnikov A, Yeh S, Zhang R, Szczerba P, Tanis KQ, et al. Induction of Alzheimer’s-like changes in brain of mice expressing mutant APP fed excess methionine. J Neurochem. 2011;116(1):82–92.CrossRefPubMed
59.
go back to reference van Wijk N, Slot RER, Duits FH, Strik M, Biesheuvel E, Sijben JWC, Blankenstein MA, Bierau J, van der Flier WM, Scheltens P, et al. Nutrients required for phospholipid synthesis are lower in blood and cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimers Dement (Amst). 2017;8:139–46. van Wijk N, Slot RER, Duits FH, Strik M, Biesheuvel E, Sijben JWC, Blankenstein MA, Bierau J, van der Flier WM, Scheltens P, et al. Nutrients required for phospholipid synthesis are lower in blood and cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimers Dement (Amst). 2017;8:139–46.
60.
go back to reference Hansson SF, Andréasson U, Wall M, Skoog I, Andreasen N, Wallin A, Zetterberg H, Blennow K. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis. 2009;16(2):389–97.CrossRefPubMed Hansson SF, Andréasson U, Wall M, Skoog I, Andreasen N, Wallin A, Zetterberg H, Blennow K. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis. 2009;16(2):389–97.CrossRefPubMed
61.
Metadata
Title
Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis
Authors
Edward G. Stopa
Keith Q. Tanis
Miles C. Miller
Elena V. Nikonova
Alexei A. Podtelezhnikov
Eva M. Finney
David J. Stone
Luiz M. Camargo
Lisan Parker
Ajay Verma
Andrew Baird
John E. Donahue
Tara Torabi
Brian P. Eliceiri
Gerald D. Silverberg
Conrad E. Johanson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2018
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-018-0102-9

Other articles of this Issue 1/2018

Fluids and Barriers of the CNS 1/2018 Go to the issue