Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2018

Open Access 01-12-2018 | Research

The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma

Authors: Sadhana Jackson, Jon Weingart, Edjah K. Nduom, Thura T. Harfi, Richard T. George, Dorothea McAreavey, Xiaobu Ye, Nicole M. Anders, Cody Peer, William D. Figg, Mark Gilbert, Michelle A. Rudek, Stuart A. Grossman

Published in: Fluids and Barriers of the CNS | Issue 1/2018

Login to get access

Abstract

Background

The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. In rodents, regadenoson activation of adenosine A2A receptors causes transient BBB disruption and increased drug concentrations in normal brain. This study was conducted to evaluate if activation of A2A receptors would increase intra-tumoral temozolomide concentrations in patients with glioblastoma.

Methods

Patients scheduled for a clinically indicated surgery for recurrent glioblastoma were eligible. Microdialysis catheters (MDC) were placed intraoperatively, and the positions were documented radiographically. On post-operative day #1, patients received oral temozolomide (150 mg/m2). On day #2, 60 min after oral temozolomide, patients received one intravenous dose of regadenoson (0.4 mg). Blood and MDC samples were collected to determine temozolomide concentrations.

Results

Six patients were enrolled. Five patients had no complications from the MDC placement or regadenoson and had successful collection of blood and dialysate samples. The mean plasma AUC was 16.4 ± 1.4 h µg/ml for temozolomide alone and 16.6 ± 2.87 h µg/ml with addition of regadenoson. The mean dialysate AUC was 2.9 ± 1.2 h µg/ml with temozolomide alone and 3.0 ± 1.7 h µg/ml with regadenoson. The mean brain:plasma AUC ratio was 18.0 ± 7.8 and 19.1 ± 10.7% for temozolomide alone and with regadenoson respectively. Peak concentration and Tmax in brain were not significantly different.

Conclusions

Although previously shown to be efficacious in rodents to increase varied size agents to cross the BBB, our data suggest that regadenoson does not increase temozolomide concentrations in brain. Further studies exploring alternative doses and schedules are needed; as transiently disrupting the BBB to facilitate drug entry is of critical importance in neuro-oncology.
Appendix
Available only for authorised users
Literature
2.
go back to reference Yang FY, et al. Pharmacokinetic analysis of 111 in-labeled liposomal doxorubicin in murine glioblastoma after blood–brain barrier disruption by focused ultrasound. PLoS ONE. 2012;7(9):e45468.CrossRefPubMedPubMedCentral Yang FY, et al. Pharmacokinetic analysis of 111 in-labeled liposomal doxorubicin in murine glioblastoma after blood–brain barrier disruption by focused ultrasound. PLoS ONE. 2012;7(9):e45468.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Abraham T, Feng J. Evolution of brain imaging instrumentation. Semin Nucl Med. 2011;41(3):202–19.CrossRefPubMed Abraham T, Feng J. Evolution of brain imaging instrumentation. Semin Nucl Med. 2011;41(3):202–19.CrossRefPubMed
5.
go back to reference Fortin D, et al. Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer. 2005;103(12):2606–15.CrossRefPubMed Fortin D, et al. Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer. 2005;103(12):2606–15.CrossRefPubMed
6.
go back to reference Oberoi RK, et al. Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro Oncol. 2016;18(1):27–36.CrossRefPubMed Oberoi RK, et al. Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro Oncol. 2016;18(1):27–36.CrossRefPubMed
7.
go back to reference Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist. Cereport Brain Res Bull. 2003;60(3):297–306.CrossRefPubMed Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist. Cereport Brain Res Bull. 2003;60(3):297–306.CrossRefPubMed
8.
go back to reference Warren K, et al. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother Pharmacol. 2004;54(3):206–12.CrossRefPubMed Warren K, et al. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother Pharmacol. 2004;54(3):206–12.CrossRefPubMed
9.
go back to reference Emerich DF, et al. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood–brain barrier: from concept to clinical evaluation. Clin Pharmacokinet. 2001;40(2):105–23.CrossRefPubMed Emerich DF, et al. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood–brain barrier: from concept to clinical evaluation. Clin Pharmacokinet. 2001;40(2):105–23.CrossRefPubMed
10.
go back to reference van Tellingen O, et al. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.CrossRefPubMed van Tellingen O, et al. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.CrossRefPubMed
11.
go back to reference Abbott NJ, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.CrossRefPubMed Abbott NJ, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.CrossRefPubMed
13.
go back to reference Zhou W, et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017;21(5):591–603.CrossRefPubMed Zhou W, et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017;21(5):591–603.CrossRefPubMed
14.
15.
go back to reference Verbeek MM, et al. Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol. 1994;144(2):372–82.PubMedPubMedCentral Verbeek MM, et al. Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol. 1994;144(2):372–82.PubMedPubMedCentral
19.
go back to reference Jackson S, et al. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J Neurooncol. 2016;126(3):433–9.CrossRefPubMed Jackson S, et al. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J Neurooncol. 2016;126(3):433–9.CrossRefPubMed
20.
go back to reference Kochanek PM, et al. Characterization of the effects of adenosine receptor agonists on cerebral blood flow in uninjured and traumatically injured rat brain using continuous arterial spin-labeled magnetic resonance imaging. J Cereb Blood Flow Metab. 2005;25(12):1596–612.CrossRefPubMed Kochanek PM, et al. Characterization of the effects of adenosine receptor agonists on cerebral blood flow in uninjured and traumatically injured rat brain using continuous arterial spin-labeled magnetic resonance imaging. J Cereb Blood Flow Metab. 2005;25(12):1596–612.CrossRefPubMed
21.
go back to reference Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem. 2001;79(3):463–84.CrossRefPubMed Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem. 2001;79(3):463–84.CrossRefPubMed
22.
go back to reference Fredholm BB, et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev. 2011;63(1):1–34.CrossRefPubMedPubMedCentral Fredholm BB, et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev. 2011;63(1):1–34.CrossRefPubMedPubMedCentral
23.
go back to reference Gariboldi V, et al. Expressions of adenosine A2A receptors in coronary arteries and peripheral blood mononuclear cells are correlated in coronary artery disease patients. Int J Cardiol. 2017;230:427–31.CrossRefPubMed Gariboldi V, et al. Expressions of adenosine A2A receptors in coronary arteries and peripheral blood mononuclear cells are correlated in coronary artery disease patients. Int J Cardiol. 2017;230:427–31.CrossRefPubMed
25.
go back to reference Jackson S, et al. The effect of regadenoson on the integrity of the human blood–brain barrier, a pilot study. J Neurooncol. 2017;132(3):513–9.CrossRefPubMed Jackson S, et al. The effect of regadenoson on the integrity of the human blood–brain barrier, a pilot study. J Neurooncol. 2017;132(3):513–9.CrossRefPubMed
26.
go back to reference Portnow J, et al. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res. 2009;15(22):7092–8.CrossRefPubMedPubMedCentral Portnow J, et al. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res. 2009;15(22):7092–8.CrossRefPubMedPubMedCentral
27.
go back to reference Ostermann S, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 2004;10(11):3728–36.CrossRefPubMed Ostermann S, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 2004;10(11):3728–36.CrossRefPubMed
28.
go back to reference Guyot LL, et al. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.PubMed Guyot LL, et al. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.PubMed
29.
go back to reference Thelin EP, et al. Microdialysis monitoring in clinical traumatic brain injury and its role in neuroprotective drug development. AAPS J. 2017;19(2):367–76.CrossRefPubMed Thelin EP, et al. Microdialysis monitoring in clinical traumatic brain injury and its role in neuroprotective drug development. AAPS J. 2017;19(2):367–76.CrossRefPubMed
30.
go back to reference Patet C, et al. Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neurosci Rep. 2016;16(4):31.CrossRefPubMed Patet C, et al. Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neurosci Rep. 2016;16(4):31.CrossRefPubMed
31.
go back to reference Blakeley J, Portnow J. Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development. Expert Opin Drug Metab Toxicol. 2010;6(12):1477–91.CrossRefPubMedPubMedCentral Blakeley J, Portnow J. Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development. Expert Opin Drug Metab Toxicol. 2010;6(12):1477–91.CrossRefPubMedPubMedCentral
32.
go back to reference Blakeley JO, et al. Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol. 2009;91(1):51–8.CrossRefPubMed Blakeley JO, et al. Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol. 2009;91(1):51–8.CrossRefPubMed
33.
go back to reference Portnow J, et al. Neural stem cell-based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res. 2016;23(12):2951–60.CrossRefPubMed Portnow J, et al. Neural stem cell-based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res. 2016;23(12):2951–60.CrossRefPubMed
34.
go back to reference Bergenheim AT, et al. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol. 2005;71(3):287–93.CrossRefPubMed Bergenheim AT, et al. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol. 2005;71(3):287–93.CrossRefPubMed
35.
go back to reference Portnow J, et al. A neuropharmacokinetic assessment of bafetinib, a second generation dual BCR-Abl/Lyn tyrosine kinase inhibitor, in patients with recurrent high-grade gliomas. Eur J Cancer. 2013;49(7):1634–40.CrossRefPubMedPubMedCentral Portnow J, et al. A neuropharmacokinetic assessment of bafetinib, a second generation dual BCR-Abl/Lyn tyrosine kinase inhibitor, in patients with recurrent high-grade gliomas. Eur J Cancer. 2013;49(7):1634–40.CrossRefPubMedPubMedCentral
36.
go back to reference Kim DG, Bynoe MS. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood–brain barrier. J Clin Invest. 2016;126(5):1717–33.CrossRefPubMedPubMedCentral Kim DG, Bynoe MS. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood–brain barrier. J Clin Invest. 2016;126(5):1717–33.CrossRefPubMedPubMedCentral
37.
go back to reference Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMed Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMed
38.
go back to reference Kim DG, Bynoe MS. A2A adenosine receptor regulates the human blood–brain barrier permeability. Mol Neurobiol. 2015;52(1):664–78.CrossRefPubMed Kim DG, Bynoe MS. A2A adenosine receptor regulates the human blood–brain barrier permeability. Mol Neurobiol. 2015;52(1):664–78.CrossRefPubMed
39.
go back to reference Munoz JL, et al. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 2015;367(1):69–75.CrossRefPubMed Munoz JL, et al. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 2015;367(1):69–75.CrossRefPubMed
Metadata
Title
The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma
Authors
Sadhana Jackson
Jon Weingart
Edjah K. Nduom
Thura T. Harfi
Richard T. George
Dorothea McAreavey
Xiaobu Ye
Nicole M. Anders
Cody Peer
William D. Figg
Mark Gilbert
Michelle A. Rudek
Stuart A. Grossman
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2018
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-017-0088-8

Other articles of this Issue 1/2018

Fluids and Barriers of the CNS 1/2018 Go to the issue