Skip to main content
Top
Published in: Virology Journal 1/2024

Open Access 01-12-2024 | SARS-CoV-2 | Review

Mechanisms and consequences of mRNA destabilization during viral infections

Authors: Soraya I. Shehata, J. Monty Watkins, James M. Burke, Roy Parker

Published in: Virology Journal | Issue 1/2024

Login to get access

Abstract

During viral infection there is dynamic interplay between the virus and the host to regulate gene expression. In many cases, the host induces the expression of antiviral genes to combat infection, while the virus uses “host shut-off” systems to better compete for cellular resources and to limit the induction of the host antiviral response. Viral mechanisms for host shut-off involve targeting translation, altering host RNA processing, and/or inducing the degradation of host mRNAs. In this review, we discuss the diverse mechanisms viruses use to degrade host mRNAs. In addition, the widespread degradation of host mRNAs can have common consequences including the accumulation of RNA binding proteins in the nucleus, which leads to altered RNA processing, mRNA export, and changes to transcription.
Literature
1.
go back to reference Ten G-S. Strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22(2):176–84.CrossRef Ten G-S. Strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22(2):176–84.CrossRef
3.
go back to reference Rivas HG, Schmaling SK, Gaglia MM. Shutoff of host gene expression in influenza A virus and herpesviruses: similar mechanisms and common themes. Viruses. 2016;8(4):102.PubMedPubMedCentralCrossRef Rivas HG, Schmaling SK, Gaglia MM. Shutoff of host gene expression in influenza A virus and herpesviruses: similar mechanisms and common themes. Viruses. 2016;8(4):102.PubMedPubMedCentralCrossRef
4.
go back to reference Walker AP, Fodor E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 2019;27(5):398–407.PubMedPubMedCentralCrossRef Walker AP, Fodor E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 2019;27(5):398–407.PubMedPubMedCentralCrossRef
5.
go back to reference Gaucherand L, Gaglia MM. The role of viral RNA degrading factors in shutoff of host gene expression. Ann Rev Virol. 2022;9(1):213–38.CrossRef Gaucherand L, Gaglia MM. The role of viral RNA degrading factors in shutoff of host gene expression. Ann Rev Virol. 2022;9(1):213–38.CrossRef
6.
go back to reference Glaunsinger BA. Modulation of the translational landscape during herpesvirus infection. Ann Rev Virol. 2015;2(1):311–33.CrossRef Glaunsinger BA. Modulation of the translational landscape during herpesvirus infection. Ann Rev Virol. 2015;2(1):311–33.CrossRef
7.
go back to reference Glaunsinger B, Chavez L, Ganem D. The exonuclease and host shutoff functions of the SOX protein of Kaposi’s Sarcoma-associated herpesvirus are genetically separable. J Virol. 2005;79(12):7396–401.PubMedPubMedCentralCrossRef Glaunsinger B, Chavez L, Ganem D. The exonuclease and host shutoff functions of the SOX protein of Kaposi’s Sarcoma-associated herpesvirus are genetically separable. J Virol. 2005;79(12):7396–401.PubMedPubMedCentralCrossRef
8.
go back to reference Glaunsinger B, Ganem D. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol Cell. 2004;13(5):713–23.PubMedCrossRef Glaunsinger B, Ganem D. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol Cell. 2004;13(5):713–23.PubMedCrossRef
9.
10.
go back to reference Ali IK, McKendrick L, Morley SJ, Jackson RJ. Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J. 2001;20(15):4233–42.PubMedPubMedCentralCrossRef Ali IK, McKendrick L, Morley SJ, Jackson RJ. Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J. 2001;20(15):4233–42.PubMedPubMedCentralCrossRef
11.
go back to reference Schneider RJ, Mohr I. Translation initiation and viral tricks. Trends Biochem Sci. 2003;28(3):130–6.PubMedCrossRef Schneider RJ, Mohr I. Translation initiation and viral tricks. Trends Biochem Sci. 2003;28(3):130–6.PubMedCrossRef
12.
13.
go back to reference Wilson JE, Pestova TV, Hellen CUT, Sarnow P. Initiation of protein synthesis from the a site of the ribosome. Cell. 2000;102(4):511–20.PubMedCrossRef Wilson JE, Pestova TV, Hellen CUT, Sarnow P. Initiation of protein synthesis from the a site of the ribosome. Cell. 2000;102(4):511–20.PubMedCrossRef
14.
16.
go back to reference Rutkowski AJ, Erhard F, L’Hernault A, Bonfert T, Schilhabel M, Crump C, et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun. 2015;20(6):7126.ADSCrossRef Rutkowski AJ, Erhard F, L’Hernault A, Bonfert T, Schilhabel M, Crump C, et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun. 2015;20(6):7126.ADSCrossRef
18.
go back to reference Silverman RH. Viral encounters with 2′,5′-oligoadenylate synthetase and rnase l during the interferon antiviral response. J Virol. 2007;81(23):12720–9.PubMedPubMedCentralCrossRef Silverman RH. Viral encounters with 2′,5′-oligoadenylate synthetase and rnase l during the interferon antiviral response. J Virol. 2007;81(23):12720–9.PubMedPubMedCentralCrossRef
19.
go back to reference Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011;31(1):41–7.PubMedCrossRef Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011;31(1):41–7.PubMedCrossRef
20.
go back to reference Prangley E, Korennykh A. 2–5A-Mediated decay (2–5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol. 2022;57(5–6):477–91.PubMedCrossRef Prangley E, Korennykh A. 2–5A-Mediated decay (2–5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol. 2022;57(5–6):477–91.PubMedCrossRef
21.
go back to reference Rath S, Prangley E, Donovan J, Demarest K, Wingreen NS, Meir Y, et al. Concerted 2–5A-mediated mRNA decay and transcription reprogram protein synthesis in the dsRNA response. Mol Cell. 2019;75(6):1218-1228.e6.PubMedPubMedCentralCrossRef Rath S, Prangley E, Donovan J, Demarest K, Wingreen NS, Meir Y, et al. Concerted 2–5A-mediated mRNA decay and transcription reprogram protein synthesis in the dsRNA response. Mol Cell. 2019;75(6):1218-1228.e6.PubMedPubMedCentralCrossRef
22.
go back to reference Burke JM, Moon SL, Matheny T, Parker R. RNase L reprograms translation by widespread mRNA turnover escaped by antiviral mRNAs. Mol Cell. 2019;75(6):1203-1217.e5.PubMedPubMedCentralCrossRef Burke JM, Moon SL, Matheny T, Parker R. RNase L reprograms translation by widespread mRNA turnover escaped by antiviral mRNAs. Mol Cell. 2019;75(6):1203-1217.e5.PubMedPubMedCentralCrossRef
23.
go back to reference Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.ADSPubMedPubMedCentralCrossRef Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.ADSPubMedPubMedCentralCrossRef
24.
go back to reference Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. PNAS. 2006;103(34):12885–90.ADSPubMedPubMedCentralCrossRef Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. PNAS. 2006;103(34):12885–90.ADSPubMedPubMedCentralCrossRef
25.
go back to reference Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 2020;27(10):959–66.PubMedCrossRef Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 2020;27(10):959–66.PubMedCrossRef
26.
go back to reference Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020;369(6508):1249–55.ADSPubMedPubMedCentralCrossRef Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020;369(6508):1249–55.ADSPubMedPubMedCentralCrossRef
27.
go back to reference Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, et al. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory Ganglia. J Virol. 2007;81(20):11069–74.PubMedPubMedCentralCrossRef Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, et al. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory Ganglia. J Virol. 2007;81(20):11069–74.PubMedPubMedCentralCrossRef
28.
go back to reference Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, et al. Molecular basis of epstein-barr virus latency establishment and lytic reactivation. Viruses. 2021;13(12):2344.PubMedPubMedCentralCrossRef Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, et al. Molecular basis of epstein-barr virus latency establishment and lytic reactivation. Viruses. 2021;13(12):2344.PubMedPubMedCentralCrossRef
32.
go back to reference Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, et al. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe. 2013;13(6):678–90.PubMedCrossRef Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, et al. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe. 2013;13(6):678–90.PubMedCrossRef
33.
go back to reference Kwong AD, Frenkel N. Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A. 1987;84(7):1926–30.ADSPubMedPubMedCentralCrossRef Kwong AD, Frenkel N. Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A. 1987;84(7):1926–30.ADSPubMedPubMedCentralCrossRef
34.
go back to reference Zelus BD, Stewart RS, Ross J. The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. J Virol. 1996;70(4):2411–9.PubMedPubMedCentralCrossRef Zelus BD, Stewart RS, Ross J. The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. J Virol. 1996;70(4):2411–9.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Doepker RC, Hsu WL, Saffran HA, Smiley JR. Herpes simplex virus virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. J Virol. 2004;78(9):4684–99.PubMedPubMedCentralCrossRef Doepker RC, Hsu WL, Saffran HA, Smiley JR. Herpes simplex virus virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. J Virol. 2004;78(9):4684–99.PubMedPubMedCentralCrossRef
37.
go back to reference Page HG, Read GS. The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F. J Virol. 2010;84(13):6886–90.PubMedPubMedCentralCrossRef Page HG, Read GS. The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F. J Virol. 2010;84(13):6886–90.PubMedPubMedCentralCrossRef
38.
go back to reference Feng P, Everly DN, Read GS. mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A. J Virol. 2005;79(15):9651–64.PubMedPubMedCentralCrossRef Feng P, Everly DN, Read GS. mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A. J Virol. 2005;79(15):9651–64.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Shu M, Taddeo B, Roizman B. Tristetraprolin recruits the herpes simplex virion host shutoff RNase to AU-Rich elements in stress response mRNAs to enable their cleavage. J Virol. 2015;89(10):5643–50.PubMedPubMedCentralCrossRef Shu M, Taddeo B, Roizman B. Tristetraprolin recruits the herpes simplex virion host shutoff RNase to AU-Rich elements in stress response mRNAs to enable their cleavage. J Virol. 2015;89(10):5643–50.PubMedPubMedCentralCrossRef
42.
go back to reference Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog. 2018;14(11):e1007331.PubMedPubMedCentralCrossRef Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog. 2018;14(11):e1007331.PubMedPubMedCentralCrossRef
43.
go back to reference Lam Q, Smibert CA, Koop KE, Lavery C, Capone JP, Weinheimer SP, et al. Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function. EMBO J. 1996;15(10):2575–81.PubMedPubMedCentralCrossRef Lam Q, Smibert CA, Koop KE, Lavery C, Capone JP, Weinheimer SP, et al. Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function. EMBO J. 1996;15(10):2575–81.PubMedPubMedCentralCrossRef
44.
go back to reference Taddeo B, Sciortino MT, Zhang W, Roizman B. Interaction of herpes simplex virus RNase with VP16 and VP22 is required for the accumulation of the protein but not for accumulation of mRNA. Proc Natl Acad Sci. 2007;104(29):12163–8.ADSPubMedPubMedCentralCrossRef Taddeo B, Sciortino MT, Zhang W, Roizman B. Interaction of herpes simplex virus RNase with VP16 and VP22 is required for the accumulation of the protein but not for accumulation of mRNA. Proc Natl Acad Sci. 2007;104(29):12163–8.ADSPubMedPubMedCentralCrossRef
45.
go back to reference Taddeo B, Zhang W, Roizman B. Role of herpes simplex virus ICP27 in the degradation of mRNA by virion host shutoff RNase. J Virol. 2010;84(19):10182–90.PubMedPubMedCentralCrossRef Taddeo B, Zhang W, Roizman B. Role of herpes simplex virus ICP27 in the degradation of mRNA by virion host shutoff RNase. J Virol. 2010;84(19):10182–90.PubMedPubMedCentralCrossRef
46.
go back to reference Pheasant K, Perry D, Wise EL, Cheng V, Elliott G. Dysregulated metabolism of the late herpes simplex virus 1 transcriptome through the vhs-VP22 axis uncouples virus cytopathic effect and virus production. PLoS Pathog. 2023;19(6):e1010966.PubMedPubMedCentralCrossRef Pheasant K, Perry D, Wise EL, Cheng V, Elliott G. Dysregulated metabolism of the late herpes simplex virus 1 transcriptome through the vhs-VP22 axis uncouples virus cytopathic effect and virus production. PLoS Pathog. 2023;19(6):e1010966.PubMedPubMedCentralCrossRef
48.
go back to reference Brandsma D, Bromberg JEC. Primary CNS lymphoma in HIV infection. Handb Clin Neurol. 2018;152:177–86.PubMedCrossRef Brandsma D, Bromberg JEC. Primary CNS lymphoma in HIV infection. Handb Clin Neurol. 2018;152:177–86.PubMedCrossRef
50.
go back to reference Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, et al. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci. 2007;104(9):3366–71.ADSPubMedPubMedCentralCrossRef Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, et al. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci. 2007;104(9):3366–71.ADSPubMedPubMedCentralCrossRef
51.
go back to reference Buisson M, Géoui T, Flot D, Tarbouriech N, Ressing ME, Wiertz EJ, et al. A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J Mol Biol. 2009;391(4):717–28.PubMedCrossRef Buisson M, Géoui T, Flot D, Tarbouriech N, Ressing ME, Wiertz EJ, et al. A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J Mol Biol. 2009;391(4):717–28.PubMedCrossRef
52.
go back to reference Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 2012;40(15):7016–45.PubMedPubMedCentralCrossRef Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 2012;40(15):7016–45.PubMedPubMedCentralCrossRef
53.
go back to reference Goldstein JN, Weller SK. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology. 1998;244(2):442–57.PubMedCrossRef Goldstein JN, Weller SK. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology. 1998;244(2):442–57.PubMedCrossRef
54.
go back to reference Goldstein JN, Weller SK. In Vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J Virol. 1998;72(11):8772–81.PubMedPubMedCentralCrossRef Goldstein JN, Weller SK. In Vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J Virol. 1998;72(11):8772–81.PubMedPubMedCentralCrossRef
55.
go back to reference Covarrubias S, Gaglia MM, Kumar GR, Wong W, Jackson AO, Glaunsinger BA. Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host Shutoff factor and the Mammalian exonuclease Xrn1. PLoS Pathog. 2011;7(10):e1002339.PubMedPubMedCentralCrossRef Covarrubias S, Gaglia MM, Kumar GR, Wong W, Jackson AO, Glaunsinger BA. Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host Shutoff factor and the Mammalian exonuclease Xrn1. PLoS Pathog. 2011;7(10):e1002339.PubMedPubMedCentralCrossRef
56.
go back to reference Bagnéris C, Briggs LC, Savva R, Ebrahimi B, Barrett TE. Crystal structure of a KSHV–SOX–DNA complex: insights into the molecular mechanisms underlying DNase activity and host shutoff. Nucleic Acids Res. 2011;39(13):5744–56.PubMedPubMedCentralCrossRef Bagnéris C, Briggs LC, Savva R, Ebrahimi B, Barrett TE. Crystal structure of a KSHV–SOX–DNA complex: insights into the molecular mechanisms underlying DNase activity and host shutoff. Nucleic Acids Res. 2011;39(13):5744–56.PubMedPubMedCentralCrossRef
57.
go back to reference Mendez AS, Vogt C, Bohne J, Glaunsinger BA. Site specific target binding controls RNA cleavage efficiency by the Kaposi’s sarcoma-associated herpesvirus endonuclease SOX. Nucleic Acids Res. 2018;46(22):11968–79.PubMedPubMedCentralCrossRef Mendez AS, Vogt C, Bohne J, Glaunsinger BA. Site specific target binding controls RNA cleavage efficiency by the Kaposi’s sarcoma-associated herpesvirus endonuclease SOX. Nucleic Acids Res. 2018;46(22):11968–79.PubMedPubMedCentralCrossRef
58.
go back to reference Covarrubias S, Richner JM, Clyde K, Lee YJ, Glaunsinger BA. Host Shutoff Is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol. 2009;83(18):9554–66.PubMedPubMedCentralCrossRef Covarrubias S, Richner JM, Clyde K, Lee YJ, Glaunsinger BA. Host Shutoff Is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol. 2009;83(18):9554–66.PubMedPubMedCentralCrossRef
59.
go back to reference Gaglia MM, Rycroft CH, Glaunsinger BA. Transcriptome-wide cleavage site mapping on cellular mRNAs reveals features underlying sequence-specific cleavage by the viral ribonuclease SOX. PLoS Pathog. 2015;11(12): e1005305.PubMedPubMedCentralCrossRef Gaglia MM, Rycroft CH, Glaunsinger BA. Transcriptome-wide cleavage site mapping on cellular mRNAs reveals features underlying sequence-specific cleavage by the viral ribonuclease SOX. PLoS Pathog. 2015;11(12): e1005305.PubMedPubMedCentralCrossRef
60.
go back to reference Lee H, Patschull AOM, Bagnéris C, Ryan H, Sanderson CM, Ebrahimi B, et al. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing. Nucleic Acids Res. 2017;45(8):4756–67.PubMedPubMedCentral Lee H, Patschull AOM, Bagnéris C, Ryan H, Sanderson CM, Ebrahimi B, et al. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing. Nucleic Acids Res. 2017;45(8):4756–67.PubMedPubMedCentral
61.
go back to reference Glaunsinger B, Ganem D. Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med. 2004;200(3):391–8.PubMedPubMedCentralCrossRef Glaunsinger B, Ganem D. Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med. 2004;200(3):391–8.PubMedPubMedCentralCrossRef
63.
go back to reference Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog. 2015;11(5):e1004899.PubMedPubMedCentralCrossRef Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog. 2015;11(5):e1004899.PubMedPubMedCentralCrossRef
64.
go back to reference Muller M, Glaunsinger BA. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases. PLoS Pathog. 2017;13(8):e1006593.PubMedPubMedCentralCrossRef Muller M, Glaunsinger BA. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases. PLoS Pathog. 2017;13(8):e1006593.PubMedPubMedCentralCrossRef
65.
go back to reference Macveigh-Fierro D, Cicerchia A, Cadorette A, Sharma V, Muller M. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proc Natl Acad Sci. 2022;119(8):e2116662119.PubMedPubMedCentralCrossRef Macveigh-Fierro D, Cicerchia A, Cadorette A, Sharma V, Muller M. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proc Natl Acad Sci. 2022;119(8):e2116662119.PubMedPubMedCentralCrossRef
68.
go back to reference te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–93.CrossRef te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–93.CrossRef
69.
go back to reference Eberle AB, Visa N. Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol. 2014;1(32):37–46.CrossRef Eberle AB, Visa N. Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol. 2014;1(32):37–46.CrossRef
70.
go back to reference Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M, Masiulis S, et al. A Mechanism for the activation of the influenza virus transcriptase. Mol Cell. 2018;70(6):1101-1110.e4.PubMedPubMedCentralCrossRef Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M, Masiulis S, et al. A Mechanism for the activation of the influenza virus transcriptase. Mol Cell. 2018;70(6):1101-1110.e4.PubMedPubMedCentralCrossRef
71.
go back to reference Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E. Influenza virus inhibits RNA polymerase II elongation. Virology. 2006;351(1):210–7.PubMedCrossRef Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E. Influenza virus inhibits RNA polymerase II elongation. Virology. 2006;351(1):210–7.PubMedCrossRef
72.
go back to reference Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature. 2009;458(7240):909–13.ADSPubMedCrossRef Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature. 2009;458(7240):909–13.ADSPubMedCrossRef
73.
go back to reference Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–6.ADSPubMedCrossRef Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–6.ADSPubMedCrossRef
74.
go back to reference Sikora D, Rocheleau L, Brown EG, Pelchat M. Influenza A virus cap-snatches host RNAs based on their abundance early after infection. Virology. 2017;1(509):167–77.CrossRef Sikora D, Rocheleau L, Brown EG, Pelchat M. Influenza A virus cap-snatches host RNAs based on their abundance early after infection. Virology. 2017;1(509):167–77.CrossRef
75.
go back to reference Hayashi T, MacDonald LA, Takimoto T. Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses. J Virol. 2015;89(12):6442–52.PubMedPubMedCentralCrossRef Hayashi T, MacDonald LA, Takimoto T. Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses. J Virol. 2015;89(12):6442–52.PubMedPubMedCentralCrossRef
76.
go back to reference Gao H, Sun Y, Hu J, Qi L, Wang J, Xiong X, et al. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Sci Rep. 2015;5(1):8262.PubMedPubMedCentralCrossRef Gao H, Sun Y, Hu J, Qi L, Wang J, Xiong X, et al. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Sci Rep. 2015;5(1):8262.PubMedPubMedCentralCrossRef
77.
go back to reference Hu J, Mo Y, Gao Z, Wang X, Gu M, Liang Y, et al. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice. Med Microbiol Immunol. 2016;205(4):381–95.PubMedPubMedCentralCrossRef Hu J, Mo Y, Gao Z, Wang X, Gu M, Liang Y, et al. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice. Med Microbiol Immunol. 2016;205(4):381–95.PubMedPubMedCentralCrossRef
78.
go back to reference Khaperskyy DA, Schmaling S, Larkins-Ford J, McCormick C, Gaglia MM. Selective degradation of host RNA polymerase II transcripts by influenza A virus PA-X host Shutoff protein. PLoS Pathog. 2016;12(2):e1005427.PubMedPubMedCentralCrossRef Khaperskyy DA, Schmaling S, Larkins-Ford J, McCormick C, Gaglia MM. Selective degradation of host RNA polymerase II transcripts by influenza A virus PA-X host Shutoff protein. PLoS Pathog. 2016;12(2):e1005427.PubMedPubMedCentralCrossRef
79.
go back to reference Gog JR, Afonso EDS, Dalton RM, Leclercq I, Tiley L, Elton D, et al. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res. 2007;35(6):1897–907.PubMedPubMedCentralCrossRef Gog JR, Afonso EDS, Dalton RM, Leclercq I, Tiley L, Elton D, et al. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res. 2007;35(6):1897–907.PubMedPubMedCentralCrossRef
80.
go back to reference Shi M, Jagger BW, Wise HM, Digard P, Holmes EC, Taubenberger JK. Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol. 2012;86(22):12411–3.PubMedPubMedCentralCrossRef Shi M, Jagger BW, Wise HM, Digard P, Holmes EC, Taubenberger JK. Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol. 2012;86(22):12411–3.PubMedPubMedCentralCrossRef
81.
go back to reference Bercovich-Kinori A, Tai J, Gelbart IA, Shitrit A, Ben-Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. Elife. 2016;5:e18311.PubMedPubMedCentralCrossRef Bercovich-Kinori A, Tai J, Gelbart IA, Shitrit A, Ben-Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. Elife. 2016;5:e18311.PubMedPubMedCentralCrossRef
82.
go back to reference Gaucherand L, Iyer A, Gilabert I, Rycroft CH, Gaglia MM. Cut site preference allows influenza A virus PA-X to discriminate between host and viral mRNAs. Nat Microbiol. 2023;8(7):1304–17.PubMedPubMedCentralCrossRef Gaucherand L, Iyer A, Gilabert I, Rycroft CH, Gaglia MM. Cut site preference allows influenza A virus PA-X to discriminate between host and viral mRNAs. Nat Microbiol. 2023;8(7):1304–17.PubMedPubMedCentralCrossRef
83.
go back to reference Gaucherand L, Porter BK, Levene RE, Price EL, Schmaling SK, Rycroft CH, et al. The influenza A virus endoribonuclease PA-X usurps host mRNA processing machinery to limit host gene expression. Cell Rep. 2019;27(3):776-792.e7.PubMedPubMedCentralCrossRef Gaucherand L, Porter BK, Levene RE, Price EL, Schmaling SK, Rycroft CH, et al. The influenza A virus endoribonuclease PA-X usurps host mRNA processing machinery to limit host gene expression. Cell Rep. 2019;27(3):776-792.e7.PubMedPubMedCentralCrossRef
84.
go back to reference Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;15(234):118–34.CrossRef Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;15(234):118–34.CrossRef
85.
go back to reference Olschewski S, Cusack S, Rosenthal M. The cap-snatching mechanism of bunyaviruses. Trends Microbiol. 2020;28(4):293–303.PubMedCrossRef Olschewski S, Cusack S, Rosenthal M. The cap-snatching mechanism of bunyaviruses. Trends Microbiol. 2020;28(4):293–303.PubMedCrossRef
86.
go back to reference Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-Protein) have an N-Terminal, Influenza-Like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6(9):e1001101.PubMedPubMedCentralCrossRef Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-Protein) have an N-Terminal, Influenza-Like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6(9):e1001101.PubMedPubMedCentralCrossRef
87.
go back to reference Blakqori G, van Knippenberg I, Elliott RM. Bunyamwera orthobunyavirus S-segment untranslated regions mediate Poly(A) tail-independent translation. J Virol. 2009;83(8):3637–46.PubMedPubMedCentralCrossRef Blakqori G, van Knippenberg I, Elliott RM. Bunyamwera orthobunyavirus S-segment untranslated regions mediate Poly(A) tail-independent translation. J Virol. 2009;83(8):3637–46.PubMedPubMedCentralCrossRef
88.
go back to reference Burke JM, Ripin N, Ferretti MB, Clair LAS, Worden-Sapper ER, Salgado F, et al. RNase L activation in the cytoplasm induces aberrant processing of mRNAs in the nucleus. PLoS Pathog. 2022;18(11):e1010930.PubMedPubMedCentralCrossRef Burke JM, Ripin N, Ferretti MB, Clair LAS, Worden-Sapper ER, Salgado F, et al. RNase L activation in the cytoplasm induces aberrant processing of mRNAs in the nucleus. PLoS Pathog. 2022;18(11):e1010930.PubMedPubMedCentralCrossRef
92.
go back to reference Upton C, Slack S, Hunter AL, Ehlers A, Roper RL. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol. 2003;77(13):7590–600.PubMedPubMedCentralCrossRef Upton C, Slack S, Hunter AL, Ehlers A, Roper RL. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol. 2003;77(13):7590–600.PubMedPubMedCentralCrossRef
93.
go back to reference Shchelkunov SN, Blinov VM, Totmenin AV, Marennikova SS, Kolykhalov AA, Frolov IV, et al. Nucleotide sequence analysis of variola virus HindIII M, L, I genome fragments. Virus Res. 1993;27(1):25–35.PubMedCrossRef Shchelkunov SN, Blinov VM, Totmenin AV, Marennikova SS, Kolykhalov AA, Frolov IV, et al. Nucleotide sequence analysis of variola virus HindIII M, L, I genome fragments. Virus Res. 1993;27(1):25–35.PubMedCrossRef
94.
go back to reference Cao S, Molina JA, Cantu F, Hernandez C, Yang Z. A poxvirus decapping enzyme colocalizes with mitochondria to regulate rna metabolism and translation and promote viral replication. MBio. 2022;13(3):e00300-e322.PubMedPubMedCentralCrossRef Cao S, Molina JA, Cantu F, Hernandez C, Yang Z. A poxvirus decapping enzyme colocalizes with mitochondria to regulate rna metabolism and translation and promote viral replication. MBio. 2022;13(3):e00300-e322.PubMedPubMedCentralCrossRef
95.
go back to reference Parrish S, Resch W, Moss B. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci USA. 2007;104(7):2139–44.ADSPubMedPubMedCentralCrossRef Parrish S, Resch W, Moss B. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci USA. 2007;104(7):2139–44.ADSPubMedPubMedCentralCrossRef
96.
go back to reference Koonin EV. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 1993;21(20):4847.PubMedPubMedCentralCrossRef Koonin EV. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 1993;21(20):4847.PubMedPubMedCentralCrossRef
97.
go back to reference Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 1999;18(19):5411–22.PubMedPubMedCentralCrossRef Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 1999;18(19):5411–22.PubMedPubMedCentralCrossRef
98.
go back to reference Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure. 2022;30(5):721-732.e4.PubMedPubMedCentralCrossRef Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure. 2022;30(5):721-732.e4.PubMedPubMedCentralCrossRef
99.
go back to reference She M, Decker CJ, Chen N, Tumati S, Parker R, Song H. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol. 2006;13(1):63–70.PubMedCrossRef She M, Decker CJ, Chen N, Tumati S, Parker R, Song H. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol. 2006;13(1):63–70.PubMedCrossRef
100.
102.
go back to reference Parrish S, Moss B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J Virol. 2006;80(2):553–61.PubMedPubMedCentralCrossRef Parrish S, Moss B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J Virol. 2006;80(2):553–61.PubMedPubMedCentralCrossRef
103.
go back to reference Cantu F, Cao S, Hernandez C, Dhungel P, Spradlin J, Yang Z. Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs. PLoS Pathog. 2020;16(10):e1008926.PubMedPubMedCentralCrossRef Cantu F, Cao S, Hernandez C, Dhungel P, Spradlin J, Yang Z. Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs. PLoS Pathog. 2020;16(10):e1008926.PubMedPubMedCentralCrossRef
104.
go back to reference Ly M, Burgess HM, Shah SB, Mohr I, Glaunsinger BA. Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathog. 2022;18(2):e1010099.PubMedPubMedCentralCrossRef Ly M, Burgess HM, Shah SB, Mohr I, Glaunsinger BA. Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathog. 2022;18(2):e1010099.PubMedPubMedCentralCrossRef
105.
go back to reference Liu SW, Katsafanas GC, Liu R, Wyatt LS, Moss B. Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. Cell Host Microbe. 2015;17(3):320–31.PubMedPubMedCentralCrossRef Liu SW, Katsafanas GC, Liu R, Wyatt LS, Moss B. Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. Cell Host Microbe. 2015;17(3):320–31.PubMedPubMedCentralCrossRef
106.
go back to reference Burgess HM, Mohr I. Cellular 5′-3′ mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015;17(3):332–44.PubMedPubMedCentralCrossRef Burgess HM, Mohr I. Cellular 5′-3′ mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015;17(3):332–44.PubMedPubMedCentralCrossRef
107.
go back to reference Backes S, Shapiro JS, Sabin LR, Pham AM, Reyes I, Moss B, et al. Degradation of host MicroRNAs by poxvirus Poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe. 2012;12(2):200–10.PubMedPubMedCentralCrossRef Backes S, Shapiro JS, Sabin LR, Pham AM, Reyes I, Moss B, et al. Degradation of host MicroRNAs by poxvirus Poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe. 2012;12(2):200–10.PubMedPubMedCentralCrossRef
108.
go back to reference Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015;16(202):89–100.CrossRef Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015;16(202):89–100.CrossRef
109.
go back to reference Semper C, Watanabe N, Savchenko A. Structural characterization of nonstructural protein 1 from SARS-CoV-2. iScience. 2021;24(1):101903.ADSPubMedCrossRef Semper C, Watanabe N, Savchenko A. Structural characterization of nonstructural protein 1 from SARS-CoV-2. iScience. 2021;24(1):101903.ADSPubMedCrossRef
110.
go back to reference Burke JM, Clair LAS, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA. 2021;27(11):1318–29.PubMedPubMedCentralCrossRef Burke JM, Clair LAS, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA. 2021;27(11):1318–29.PubMedPubMedCentralCrossRef
111.
go back to reference Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CTK, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008;82(9):4471–9.PubMedPubMedCentralCrossRef Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CTK, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008;82(9):4471–9.PubMedPubMedCentralCrossRef
112.
go back to reference Kamitani W, Huang C, Narayanan K, Lokugamage KG, Makino S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol. 2009;16(11):1134–40.PubMedPubMedCentralCrossRef Kamitani W, Huang C, Narayanan K, Lokugamage KG, Makino S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol. 2009;16(11):1134–40.PubMedPubMedCentralCrossRef
113.
114.
go back to reference Mendez AS, Ly M, González-Sánchez AM, Hartenian E, Ingolia NT, Cate JH, et al. The N-terminal domain of SARS-CoV-2 nsp1 plays key roles in suppression of cellular gene expression and preservation of viral gene expression. Cell Rep. 2021;37(3):109841.PubMedPubMedCentralCrossRef Mendez AS, Ly M, González-Sánchez AM, Hartenian E, Ingolia NT, Cate JH, et al. The N-terminal domain of SARS-CoV-2 nsp1 plays key roles in suppression of cellular gene expression and preservation of viral gene expression. Cell Rep. 2021;37(3):109841.PubMedPubMedCentralCrossRef
115.
go back to reference Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, et al. Nonstructural protein 1 of SARS-CoV-2 Is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol Cell. 2020;80(6):1055-1066.e6.PubMedPubMedCentralCrossRef Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, et al. Nonstructural protein 1 of SARS-CoV-2 Is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol Cell. 2020;80(6):1055-1066.e6.PubMedPubMedCentralCrossRef
116.
go back to reference Zhang K, Miorin L, Makio T, Dehghan I, Gao S, Xie Y, et al. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Sci Adv. 2021;7(6):7386.ADSCrossRef Zhang K, Miorin L, Makio T, Dehghan I, Gao S, Xie Y, et al. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Sci Adv. 2021;7(6):7386.ADSCrossRef
117.
go back to reference Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27.PubMedPubMedCentralCrossRef Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27.PubMedPubMedCentralCrossRef
118.
go back to reference Liang X. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15(9):1716–28.PubMedPubMedCentralCrossRef Liang X. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15(9):1716–28.PubMedPubMedCentralCrossRef
119.
go back to reference Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci USA. 2021;118(6):e2017715118.PubMedPubMedCentralCrossRef Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci USA. 2021;118(6):e2017715118.PubMedPubMedCentralCrossRef
120.
go back to reference Wells JN, Buschauer R, Mackens-Kiani T, Best K, Kratzat H, Berninghausen O, et al. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biol. 2020;18(7):e3000780.PubMedPubMedCentralCrossRef Wells JN, Buschauer R, Mackens-Kiani T, Best K, Kratzat H, Berninghausen O, et al. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biol. 2020;18(7):e3000780.PubMedPubMedCentralCrossRef
121.
go back to reference Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, et al. Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol. 2017;24(5):453–60.PubMedCrossRef Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, et al. Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol. 2017;24(5):453–60.PubMedCrossRef
122.
go back to reference Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Frontiers in Microbiology [Internet]. 2018 [cited 2022 Sep 23];8. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fmicb.2017.02629 Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Frontiers in Microbiology [Internet]. 2018 [cited 2022 Sep 23];8. Available from: https://​www.​frontiersin.​org/​articles/​https://​doi.​org/​10.​3389/​fmicb.​2017.​02629
123.
go back to reference Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci. 2021;11(1):136.PubMedPubMedCentralCrossRef Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci. 2021;11(1):136.PubMedPubMedCentralCrossRef
124.
go back to reference Rangan R, Zheludev IN, Hagey RJ, Pham EA, Wayment-Steele HK, Glenn JS, et al. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. RNA. 2020;26(8):937–59.PubMedPubMedCentralCrossRef Rangan R, Zheludev IN, Hagey RJ, Pham EA, Wayment-Steele HK, Glenn JS, et al. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. RNA. 2020;26(8):937–59.PubMedPubMedCentralCrossRef
125.
go back to reference Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, et al. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA. 2022;28(5):766–79.PubMedPubMedCentralCrossRef Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, et al. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA. 2022;28(5):766–79.PubMedPubMedCentralCrossRef
126.
go back to reference Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, et al. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proc Natl Acad Sci. 2022;119(9):e2117198119.PubMedPubMedCentralCrossRef Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, et al. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proc Natl Acad Sci. 2022;119(9):e2117198119.PubMedPubMedCentralCrossRef
127.
go back to reference Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, et al. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2021;27(3):253–64.PubMedCentralCrossRef Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, et al. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2021;27(3):253–64.PubMedCentralCrossRef
128.
go back to reference Tardivat Y, Sosnowski P, Tidu A, Westhof E, Eriani G, Martin F. SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome. Nucleic Acids Res. 2023;51(16):8677–90.PubMedPubMedCentralCrossRef Tardivat Y, Sosnowski P, Tidu A, Westhof E, Eriani G, Martin F. SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome. Nucleic Acids Res. 2023;51(16):8677–90.PubMedPubMedCentralCrossRef
129.
go back to reference Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog. 2011;7(12):e1002433.PubMedPubMedCentralCrossRef Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog. 2011;7(12):e1002433.PubMedPubMedCentralCrossRef
130.
go back to reference Lokugamage KG, Narayanan K, Huang C, Makino S. Severe acute respiratory syndrome coronavirus protein nsp1 Is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol. 2012;86(24):13598–608.PubMedPubMedCentralCrossRef Lokugamage KG, Narayanan K, Huang C, Makino S. Severe acute respiratory syndrome coronavirus protein nsp1 Is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol. 2012;86(24):13598–608.PubMedPubMedCentralCrossRef
131.
132.
go back to reference Almeida MS, Johnson MA, Herrmann T, Geralt M, Wüthrich K. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J Virol. 2007;81(7):3151–61.PubMedPubMedCentralCrossRef Almeida MS, Johnson MA, Herrmann T, Geralt M, Wüthrich K. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J Virol. 2007;81(7):3151–61.PubMedPubMedCentralCrossRef
133.
go back to reference Gilbertson S, Federspiel JD, Hartenian E, Cristea IM, Glaunsinger B. Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. Life. 2018;3(7):e37663. Gilbertson S, Federspiel JD, Hartenian E, Cristea IM, Glaunsinger B. Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. Life. 2018;3(7):e37663.
134.
go back to reference Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic Poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol. 2010;30(21):4996–5008.PubMedPubMedCentralCrossRef Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic Poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol. 2010;30(21):4996–5008.PubMedPubMedCentralCrossRef
135.
go back to reference Lee YJ, Glaunsinger BA. Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol. 2009;7(5):e1000107.PubMedPubMedCentralCrossRef Lee YJ, Glaunsinger BA. Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol. 2009;7(5):e1000107.PubMedPubMedCentralCrossRef
136.
go back to reference Hamilton BJ, Burns CM, Nichols RC, Rigby WF. Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein A1 in human T lymphocytes The roles of cytoplasmic location, transcription, and phosphorylation. J Biol Chem. 1997;272(45):28732–41.PubMedCrossRef Hamilton BJ, Burns CM, Nichols RC, Rigby WF. Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein A1 in human T lymphocytes The roles of cytoplasmic location, transcription, and phosphorylation. J Biol Chem. 1997;272(45):28732–41.PubMedCrossRef
137.
go back to reference Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):1431–42.PubMedPubMedCentralCrossRef Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):1431–42.PubMedPubMedCentralCrossRef
138.
go back to reference Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol Cell. 1998;1(7):991–1000.PubMedCrossRef Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol Cell. 1998;1(7):991–1000.PubMedCrossRef
139.
go back to reference Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, et al. Transcription elongation can affect genome 3D structure. Cell. 2018;174(6):1522-1536.e22.PubMedPubMedCentralCrossRef Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, et al. Transcription elongation can affect genome 3D structure. Cell. 2018;174(6):1522-1536.e22.PubMedPubMedCentralCrossRef
140.
go back to reference Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, et al. Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep. 2018;23(7):2119-2129.e3.PubMedPubMedCentralCrossRef Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, et al. Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep. 2018;23(7):2119-2129.e3.PubMedPubMedCentralCrossRef
141.
go back to reference Hennig T, Michalski M, Rutkowski AJ, Djakovic L, Whisnant AW, Friedl MS, et al. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018;14(3):e1006954.PubMedPubMedCentralCrossRef Hennig T, Michalski M, Rutkowski AJ, Djakovic L, Whisnant AW, Friedl MS, et al. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018;14(3):e1006954.PubMedPubMedCentralCrossRef
142.
go back to reference Vilborg A, Steitz JA. Readthrough transcription: How are DoGs made and what do they do? RNA Biol. 2017;14(5):632–6.PubMedCrossRef Vilborg A, Steitz JA. Readthrough transcription: How are DoGs made and what do they do? RNA Biol. 2017;14(5):632–6.PubMedCrossRef
143.
go back to reference Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread inducible transcription downstream of human genes. Mol Cell. 2015;59(3):449–61.PubMedPubMedCentralCrossRef Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread inducible transcription downstream of human genes. Mol Cell. 2015;59(3):449–61.PubMedPubMedCentralCrossRef
144.
go back to reference Abernathy E, Gilbertson S, Alla R, Glaunsinger B. Viral nucleases induce an mRNA degradation-transcription feedback loop in mammalian cells. Cell Host Microbe. 2015;18(2):243–53.PubMedPubMedCentralCrossRef Abernathy E, Gilbertson S, Alla R, Glaunsinger B. Viral nucleases induce an mRNA degradation-transcription feedback loop in mammalian cells. Cell Host Microbe. 2015;18(2):243–53.PubMedPubMedCentralCrossRef
145.
go back to reference Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol. 2019;54(4):385–98.PubMedPubMedCentralCrossRef Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol. 2019;54(4):385–98.PubMedPubMedCentralCrossRef
146.
go back to reference Richner JM, Clyde K, Pezda AC, Cheng BYH, Wang T, Kumar GR, et al. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog. 2011;7(7):e1002150.PubMedPubMedCentralCrossRef Richner JM, Clyde K, Pezda AC, Cheng BYH, Wang T, Kumar GR, et al. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog. 2011;7(7):e1002150.PubMedPubMedCentralCrossRef
147.
go back to reference Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. Life. 2021;10:e58342. Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. Life. 2021;10:e58342.
148.
go back to reference Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell. 2019;178(1):107-121.e18.PubMedPubMedCentralCrossRef Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell. 2019;178(1):107-121.e18.PubMedPubMedCentralCrossRef
149.
go back to reference Burke JM, Gilchrist AR, Sawyer SL, Parker R. RNase L limits host and viral protein synthesis via inhibition of mRNA export. Sci Adv. 2021;7(23):2479.ADSCrossRef Burke JM, Gilchrist AR, Sawyer SL, Parker R. RNase L limits host and viral protein synthesis via inhibition of mRNA export. Sci Adv. 2021;7(23):2479.ADSCrossRef
150.
go back to reference Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature. 2001;413(6855):538–42.ADSPubMedCrossRef Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature. 2001;413(6855):538–42.ADSPubMedCrossRef
Metadata
Title
Mechanisms and consequences of mRNA destabilization during viral infections
Authors
Soraya I. Shehata
J. Monty Watkins
James M. Burke
Roy Parker
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2024
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-024-02305-1

Other articles of this Issue 1/2024

Virology Journal 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine