Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2021

Open Access 01-12-2021 | Stroke | Research

Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study

Authors: Aida Sehle, Jana Stuerner, Thomas Hassa, Stefan Spiteri, Mircea A. Schoenfeld, Joachim Liepert

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2021

Login to get access

Abstract

Background

Physical training is able to induce changes at neurophysiological and behavioral level associated with performance changes for the trained movements. The current study explores the effects of an additional intense robot-assisted upper extremity training on functional outcome and motor excitability in subacute stroke patients.

Methods

Thirty moderately to severely affected patients < 3 months after stroke received a conventional inpatient rehabilitation. Based on a case–control principle 15 patients were assigned to receive additional 45 min of robot-assisted therapy (Armeo®Spring) 5 times per week (n = 15, intervention group, IG). The Fugl-Meyer Assessment for the Upper Extremity (FMA-UE) was chosen as primary outcome parameter. Patients were tested before and after a 3-week treatment period as well as after a follow-up period of 2 weeks. Using transcranial magnetic stimulation motor evoked potentials (MEPs) and cortical silent periods were recorded from the deltoid muscle on both sides before and after the intervention period to study effects at neurophysiological level. Statistical analysis was performed with non-parametric tests. Correlation analysis was done with Spearman´s rank correlation co-efficient.

Results

Both groups showed a significant improvement in FMA-UE from pre to post (IG: + 10.6 points, control group (CG): + 7.3 points) and from post to follow-up (IG: + 3.9 points, CG: + 3.3 points) without a significant difference between them. However, at neurophysiological level post-intervention MEP amplitudes were significantly larger in the IG but not in the CG. The observed MEP amplitudes changes were positively correlated with FMA-UE changes and with the total amount of robot-assisted therapy.

Conclusion

The additional robot-assisted therapy induced stronger excitability increases in the intervention group. However, this effect did not transduce to motor performance improvements at behavioral level.
Trial registration The trial was registered in German Clinical Trials Register. Clinical trial registration number: DRKS00015083. Registration date: September 4th, 2018. https://​www.​drks.​de/​drks_​web/​navigate.​do?​navigationId=​trial.​HTML&​TRIAL_​ID=​DRKS00015083. Registration was done retrospectively
Literature
1.
go back to reference Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–21.PubMedCrossRef Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–21.PubMedCrossRef
4.
go back to reference Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Effectiveness and superiority of rehabilitative treatments in enhancing motor recovery within 6 months poststroke: a systemic review. Arch Phys Med Rehabil. 2019;100(2):366–78.PubMedCrossRef Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Effectiveness and superiority of rehabilitative treatments in enhancing motor recovery within 6 months poststroke: a systemic review. Arch Phys Med Rehabil. 2019;100(2):366–78.PubMedCrossRef
6.
go back to reference Bernhardt J, Mehrholz J. Robotic-assisted training after stroke: RATULS advances science. Lancet. 2019;394(10192):6–8.PubMedCrossRef Bernhardt J, Mehrholz J. Robotic-assisted training after stroke: RATULS advances science. Lancet. 2019;394(10192):6–8.PubMedCrossRef
7.
go back to reference Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21.PubMedCrossRef Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21.PubMedCrossRef
8.
go back to reference Han C, Wang Q, Meng PP, Qi MZ. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin Rehabil. 2013;27(1):75–81.PubMedCrossRef Han C, Wang Q, Meng PP, Qi MZ. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin Rehabil. 2013;27(1):75–81.PubMedCrossRef
9.
go back to reference Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.PubMedPubMedCentralCrossRef Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.PubMedPubMedCentralCrossRef
10.
go back to reference Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedPubMedCentralCrossRef Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedPubMedCentralCrossRef
11.
go back to reference Meimoun M, Bayle N, Baude M, Gracies JM. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris). 2015;171(2):130–40.CrossRef Meimoun M, Bayle N, Baude M, Gracies JM. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris). 2015;171(2):130–40.CrossRef
13.
go back to reference Wolf SL, Winstein CJ, Miller JP, et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008;7(1):33–40.PubMedPubMedCentralCrossRef Wolf SL, Winstein CJ, Miller JP, et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008;7(1):33–40.PubMedPubMedCentralCrossRef
14.
go back to reference McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–90.PubMedCrossRef McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–90.PubMedCrossRef
15.
go back to reference Lang CE, Strube MJ, Bland MD, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.PubMedPubMedCentralCrossRef Lang CE, Strube MJ, Bland MD, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.PubMedPubMedCentralCrossRef
16.
go back to reference Winstein C, Kim B, Kim S, Martinez C, Schweighofer N. Dosage matters: a phase IIb randomized controlled trial of motor therapy in the chronic phase after stroke. Stroke. 2019;50(7):1831–7.PubMedCrossRef Winstein C, Kim B, Kim S, Martinez C, Schweighofer N. Dosage matters: a phase IIb randomized controlled trial of motor therapy in the chronic phase after stroke. Stroke. 2019;50(7):1831–7.PubMedCrossRef
17.
go back to reference Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry. 2019;90(5):498–506.PubMedCrossRef Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry. 2019;90(5):498–506.PubMedCrossRef
18.
go back to reference Daly JJ, McCabe JP, Holcomb J, Monkiewicz M, Gansen J, Pundik S. Long-Dose intensive therapy is necessary for strong, clinically significant, upper limb functional gains and retained gains in Severe/Moderate chronic stroke. Neurorehabil Neural Repair. 2019;33(7):523–37.PubMedPubMedCentralCrossRef Daly JJ, McCabe JP, Holcomb J, Monkiewicz M, Gansen J, Pundik S. Long-Dose intensive therapy is necessary for strong, clinically significant, upper limb functional gains and retained gains in Severe/Moderate chronic stroke. Neurorehabil Neural Repair. 2019;33(7):523–37.PubMedPubMedCentralCrossRef
19.
go back to reference Cortes M, Black-Schaffer RM, Edwards DJ. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. Neuromodulation. 2012;15(4):316–25.PubMedPubMedCentralCrossRef Cortes M, Black-Schaffer RM, Edwards DJ. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. Neuromodulation. 2012;15(4):316–25.PubMedPubMedCentralCrossRef
20.
go back to reference Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180(4):583–93.PubMedCrossRef Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180(4):583–93.PubMedCrossRef
21.
go back to reference Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.PubMedCrossRef Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.PubMedCrossRef
22.
go back to reference Liepert J, Graef S, Uhde I, Leidner O, Weiller C. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand. 2000;101(5):321–6.PubMedCrossRef Liepert J, Graef S, Uhde I, Leidner O, Weiller C. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand. 2000;101(5):321–6.PubMedCrossRef
23.
go back to reference Traversa R, Cicinelli P, Oliveri M, et al. Neurophysiological follow-up of motor cortical output in stroke patients. Clin Neurophysiol. 2000;111(9):1695–703.PubMedCrossRef Traversa R, Cicinelli P, Oliveri M, et al. Neurophysiological follow-up of motor cortical output in stroke patients. Clin Neurophysiol. 2000;111(9):1695–703.PubMedCrossRef
24.
go back to reference Colomer C, Baldovi A, Torrome S, et al. Efficacy of Armeo(R) Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia. 2013;28(5):261–7.PubMedCrossRef Colomer C, Baldovi A, Torrome S, et al. Efficacy of Armeo(R) Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia. 2013;28(5):261–7.PubMedCrossRef
25.
go back to reference Bartolo M, De Nunzio AM, Sebastiano F, et al. Arm weight support training improves functional motor outcome and movement smoothness after stroke. Funct Neurol. 2014;29(1):15–21.PubMedPubMedCentral Bartolo M, De Nunzio AM, Sebastiano F, et al. Arm weight support training improves functional motor outcome and movement smoothness after stroke. Funct Neurol. 2014;29(1):15–21.PubMedPubMedCentral
27.
go back to reference Gladstone DJ, Danells CJ, Black SE. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.CrossRef Gladstone DJ, Danells CJ, Black SE. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.CrossRef
28.
go back to reference Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.CrossRef Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.CrossRef
29.
go back to reference Rabadi MH, Rabadi FM. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Arch Phys Med Rehabil. 2006;87(7):962–6.PubMedCrossRef Rabadi MH, Rabadi FM. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Arch Phys Med Rehabil. 2006;87(7):962–6.PubMedCrossRef
30.
go back to reference Buchmann I, Randerath J. Selection and application of familiar and novel tools in patients with left and right hemispheric stroke: psychometrics and normative data. Cortex. 2017;94:49–62.PubMedCrossRef Buchmann I, Randerath J. Selection and application of familiar and novel tools in patients with left and right hemispheric stroke: psychometrics and normative data. Cortex. 2017;94:49–62.PubMedCrossRef
31.
go back to reference Buchmann I, Dangel M, Finkel L, et al. [Formula: see text] Limb apraxia profiles in different clinical samples. Clin Neuropsychol. 2020;34(1):217–42.PubMedCrossRef Buchmann I, Dangel M, Finkel L, et al. [Formula: see text] Limb apraxia profiles in different clinical samples. Clin Neuropsychol. 2020;34(1):217–42.PubMedCrossRef
32.
go back to reference Randerath J, Buchmann I, Liepert J, Büsching I. Diagnostic Instrument for Limb Apraxia: Short Version (DILA-S). 2017. Randerath J, Buchmann I, Liepert J, Büsching I. Diagnostic Instrument for Limb Apraxia: Short Version (DILA-S). 2017.
33.
go back to reference Wong CEI, Cotrena LDBC, Joanette Y, Fonseca RP. Reliability and construct validity of the bells test. Avaliaçao Psicologica. 2018;17(1):28–36. Wong CEI, Cotrena LDBC, Joanette Y, Fonseca RP. Reliability and construct validity of the bells test. Avaliaçao Psicologica. 2018;17(1):28–36.
34.
go back to reference Gauthier L, Dehaut F, Joanette Y. The bells test: a quantitative and qualitative test for visual neglect. Int J Clin Neuropsychol. 1989;11(2):49–54. Gauthier L, Dehaut F, Joanette Y. The bells test: a quantitative and qualitative test for visual neglect. Int J Clin Neuropsychol. 1989;11(2):49–54.
35.
go back to reference Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application An updated report from an IFCN Committee. Clin Neurophysiol. 2015;126(6):1071–107.PubMedPubMedCentralCrossRef Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application An updated report from an IFCN Committee. Clin Neurophysiol. 2015;126(6):1071–107.PubMedPubMedCentralCrossRef
36.
go back to reference Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466(1):521–34.PubMedPubMedCentral Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466(1):521–34.PubMedPubMedCentral
37.
go back to reference Brasil-Neto J, Cammarota A, Valls-Solé J, Pascual-Leone A, Hallett M, Cohen L. Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand. 1995;92(5):383–6.PubMedCrossRef Brasil-Neto J, Cammarota A, Valls-Solé J, Pascual-Leone A, Hallett M, Cohen L. Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand. 1995;92(5):383–6.PubMedCrossRef
38.
go back to reference Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.PubMedCrossRef Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.PubMedCrossRef
39.
go back to reference Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.PubMedCrossRef Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.PubMedCrossRef
40.
go back to reference Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.PubMedCrossRef Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.PubMedCrossRef
41.
go back to reference Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke. 2013;8(1):25–32.PubMedCrossRef Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke. 2013;8(1):25–32.PubMedCrossRef
42.
go back to reference Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.PubMedCrossRef Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.PubMedCrossRef
43.
go back to reference Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8.PubMedCrossRef Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8.PubMedCrossRef
44.
45.
go back to reference Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.PubMedCrossRef Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.PubMedCrossRef
46.
go back to reference Hollenstein C, Cabri J. Zusatztherapie mit computerunterstütztem Trainingssystem im Vergleich zu ergotherapeutischer Armgruppentherapie. Neuroreha. 2011;3(01):40–2.CrossRef Hollenstein C, Cabri J. Zusatztherapie mit computerunterstütztem Trainingssystem im Vergleich zu ergotherapeutischer Armgruppentherapie. Neuroreha. 2011;3(01):40–2.CrossRef
47.
go back to reference Kukowski B, Haug B. Quantitative evaluation of the silent period, evoked by transcranial magnetic stimulation during sustained muscle contraction, in normal man and in patients with stroke. Electromyogr Clin Neurophysiol. 1992;32(7–8):373–8.PubMed Kukowski B, Haug B. Quantitative evaluation of the silent period, evoked by transcranial magnetic stimulation during sustained muscle contraction, in normal man and in patients with stroke. Electromyogr Clin Neurophysiol. 1992;32(7–8):373–8.PubMed
48.
go back to reference Braune HJ, Fritz C. Transcranial magnetic stimulation-evoked inhibition of voluntary muscle activity (silent period) is impaired in patients with ischemic hemispheric lesion. Stroke. 1995;26(4):550–3.PubMedCrossRef Braune HJ, Fritz C. Transcranial magnetic stimulation-evoked inhibition of voluntary muscle activity (silent period) is impaired in patients with ischemic hemispheric lesion. Stroke. 1995;26(4):550–3.PubMedCrossRef
49.
go back to reference Ahonen J-P, Jehkonen M, Dastidar P, Molnar G, Häkkinen V. Cortical silent period evoked by transcranial magnetic stimulation in ischemic stroke. Electroencephalogr Clin Neurophysiol Electromyogr Motor Control. 1998;109(3):224–9.CrossRef Ahonen J-P, Jehkonen M, Dastidar P, Molnar G, Häkkinen V. Cortical silent period evoked by transcranial magnetic stimulation in ischemic stroke. Electroencephalogr Clin Neurophysiol Electromyogr Motor Control. 1998;109(3):224–9.CrossRef
50.
go back to reference Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C. Motor strokes: the lesion location determines motor excitability changes. Stroke. 2005;36(12):2648–53.PubMedCrossRef Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C. Motor strokes: the lesion location determines motor excitability changes. Stroke. 2005;36(12):2648–53.PubMedCrossRef
Metadata
Title
Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study
Authors
Aida Sehle
Jana Stuerner
Thomas Hassa
Stefan Spiteri
Mircea A. Schoenfeld
Joachim Liepert
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2021
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00792-1

Other articles of this Issue 1/2021

Journal of NeuroEngineering and Rehabilitation 1/2021 Go to the issue