Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Research

Modular motor control of the sound limb in gait of people with trans-femoral amputation

Authors: Cristiano De Marchis, Simone Ranaldi, Mariano Serrao, Alberto Ranavolo, Francesco Draicchio, Francesco Lacquaniti, Silvia Conforto

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

The above-knee amputation of a lower limb is a severe impairment that affects significantly the ability to walk; considering this, a complex adaptation strategy at the neuromuscular level is needed in order to be able to move safely with a prosthetic knee. In literature, it has been demonstrated that muscle activity during walking can be described via the activation of a small set of muscle synergies. The analysis of the composition and the time activation profiles of such synergies have been found to be a valid tool for the description of the motor control schemes in pathological subjects.

Methods

In this study, we used muscle synergy analysis techniques to characterize the differences in the modular motor control schemes between a population of 14 people with trans-femoral amputation and 12 healthy subjects walking at two different (slow and normal self-selected) speeds. Muscle synergies were extracted from a 12 lower-limb muscles sEMG recording via non-negative matrix factorization. Equivalence of the synergy vectors was quantified by a cross-validation procedure, while differences in terms of time activation coefficients were evaluated through the analysis of the activity in the different gait sub-phases.

Results

Four synergies were able to reconstruct the muscle activity in all subjects. The spatial component of the synergy vectors did not change in all the analysed populations, while differences were present in the activity during the sound limb’s stance phase. Main features of people with trans-femoral amputation’s muscle synergy recruitment are a prolonged activation of the module composed of calf muscles and an additional activity of the hamstrings’ module before and after the prosthetic heel strike.

Conclusions

Synergy-based results highlight how, although the complexity and the spatial organization of motor control schemes are the same found in healthy subjects, substantial differences are present in the synergies’ recruitment of people with trans femoral amputation. In particular, the most critical task during the gait cycle is the weight transfer from the sound limb to the prosthetic one. Future studies will integrate these results with the dynamics of movement, aiming to a complete neuro-mechanical characterization of people with trans-femoral amputation’s walking strategies that can be used to improve the rehabilitation therapies.
Literature
1.
go back to reference Ziegler-Graham K, MacKenzie E, Ephraim P, Travison T, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.CrossRef Ziegler-Graham K, MacKenzie E, Ephraim P, Travison T, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.CrossRef
2.
go back to reference Ülger Ö, Yıldırım Şahan T, Çelik SE. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother Theory Pract. 2018;34(11):821–34.CrossRef Ülger Ö, Yıldırım Şahan T, Çelik SE. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother Theory Pract. 2018;34(11):821–34.CrossRef
3.
go back to reference Fajardo-Martos I, Roda O, Zambudio-Periago R, Bueno-Cavanillas A, Hita-Contreras F, Sánchez-Montesinos I. Predicting successful prosthetic rehabilitation in major lower-limb amputation patients: a 15-year retrospective cohort study. Braz J Phys Ther. 2018;22(3):205–14.CrossRef Fajardo-Martos I, Roda O, Zambudio-Periago R, Bueno-Cavanillas A, Hita-Contreras F, Sánchez-Montesinos I. Predicting successful prosthetic rehabilitation in major lower-limb amputation patients: a 15-year retrospective cohort study. Braz J Phys Ther. 2018;22(3):205–14.CrossRef
4.
go back to reference Rotter K, Sanhueza R, Robles K, Godoy M. A descriptive study of traumatic lower limb amputees from the hospital Hel Trabajador: clinical evolution from the accident until rehabilitation discharge. Prosthetics Orthot Int. 2006;30(1):81–6.CrossRef Rotter K, Sanhueza R, Robles K, Godoy M. A descriptive study of traumatic lower limb amputees from the hospital Hel Trabajador: clinical evolution from the accident until rehabilitation discharge. Prosthetics Orthot Int. 2006;30(1):81–6.CrossRef
5.
go back to reference Varrecchia T, Serrao M, Rinaldi M, Ranavolo A, Conforto S, De Marchis C, Simonetti A, Poni I, Castellano S, Silvetti A, Tatarelli A, Fiori L, Conte C, Draicchio F. Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Hum Mov Sci. 2019;66:9–21.CrossRef Varrecchia T, Serrao M, Rinaldi M, Ranavolo A, Conforto S, De Marchis C, Simonetti A, Poni I, Castellano S, Silvetti A, Tatarelli A, Fiori L, Conte C, Draicchio F. Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Hum Mov Sci. 2019;66:9–21.CrossRef
6.
go back to reference Bae T, Choi K, Hong D, Mun M. Dynamic analysis of above-knee amputee gait. Clin Biomech. 2007;22(5):557–66.CrossRef Bae T, Choi K, Hong D, Mun M. Dynamic analysis of above-knee amputee gait. Clin Biomech. 2007;22(5):557–66.CrossRef
7.
go back to reference Wentink EC, Prinsen EC, Rietman JS, Veltink PH. Comparison of muscle activity patterns of trans-femoral amputees and control subjects during walking. J Neuroeng Rehabil. 2013;10(1):87.CrossRef Wentink EC, Prinsen EC, Rietman JS, Veltink PH. Comparison of muscle activity patterns of trans-femoral amputees and control subjects during walking. J Neuroeng Rehabil. 2013;10(1):87.CrossRef
8.
go back to reference Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. J Biomech. 2009;42(9):1282–7.CrossRef Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. J Biomech. 2009;42(9):1282–7.CrossRef
9.
go back to reference Gizzi L, Nielsen J, Felici F, Moreno JC, Pons JL, Farina D. Motor modules in robot-aided walking. J Neuroeng Rehabil. 2012;9(1):76.CrossRef Gizzi L, Nielsen J, Felici F, Moreno JC, Pons JL, Farina D. Motor modules in robot-aided walking. J Neuroeng Rehabil. 2012;9(1):76.CrossRef
10.
go back to reference Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–99.CrossRef Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–99.CrossRef
11.
go back to reference Mcgowan CP, Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: adaptations to altered mechanical demands. J Biomech. 2010;43(3):412–9.CrossRef Mcgowan CP, Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: adaptations to altered mechanical demands. J Biomech. 2010;43(3):412–9.CrossRef
12.
go back to reference Torres-Oviedo G, Ting LH. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J Neurophysiol. 2010;103(6):3084–98.CrossRef Torres-Oviedo G, Ting LH. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J Neurophysiol. 2010;103(6):3084–98.CrossRef
13.
go back to reference Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci. 2013;7:48. Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci. 2013;7:48.
14.
go back to reference Hug F, Turpin NA, Couturier A, Dorel S. Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol. 2011;106(1):91–103.CrossRef Hug F, Turpin NA, Couturier A, Dorel S. Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol. 2011;106(1):91–103.CrossRef
15.
go back to reference De Marchis C, Schmid M, Bibbo D, Castronovo AM, Dalessio T, Conforto S. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling. Front Comput Neurosci. 2013;7:35.CrossRef De Marchis C, Schmid M, Bibbo D, Castronovo AM, Dalessio T, Conforto S. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling. Front Comput Neurosci. 2013;7:35.CrossRef
16.
go back to reference De Marchis C, Schmid M, Bibbo D, Bernabucci I, Conforto S. Inter-individual variability of forces and modular muscle coordination in cycling: a study on untrained subjects. Hum Mov Sci. 2013;32(6):1480–94.CrossRef De Marchis C, Schmid M, Bibbo D, Bernabucci I, Conforto S. Inter-individual variability of forces and modular muscle coordination in cycling: a study on untrained subjects. Hum Mov Sci. 2013;32(6):1480–94.CrossRef
17.
go back to reference Ting LH, Chiel HJ, Trumbower RD, Allen JL, Mckay JL, Hackney ME, et al. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 2015;86(1):38–54.CrossRef Ting LH, Chiel HJ, Trumbower RD, Allen JL, Mckay JL, Hackney ME, et al. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 2015;86(1):38–54.CrossRef
18.
go back to reference Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced Locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103(2):844–57.CrossRef Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced Locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103(2):844–57.CrossRef
19.
go back to reference Ambrosini E, De Marchis C, Pedrocchi A, Ferrigno G, Monticone M, Schmid M, et al. Neuro-mechanics of recumbent leg cycling in post-acute stroke patients. Ann Biomed Eng. 2016;44(11):3238–51.CrossRef Ambrosini E, De Marchis C, Pedrocchi A, Ferrigno G, Monticone M, Schmid M, et al. Neuro-mechanics of recumbent leg cycling in post-acute stroke patients. Ann Biomed Eng. 2016;44(11):3238–51.CrossRef
20.
go back to reference Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 2013;38(3):511–7.CrossRef Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 2013;38(3):511–7.CrossRef
21.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Hägg G. European recommendations for surface electromyography. Roessingh research and development. 1999;8(2):13–54. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Hägg G. European recommendations for surface electromyography. Roessingh research and development. 1999;8(2):13–54.
22.
go back to reference Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575–87.CrossRef Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575–87.CrossRef
23.
go back to reference Ranaldi S, De Marchis C, Conforto S. An automatic, adaptive, information-based algorithm for the extraction of the sEMG envelope. J Electromyogr Kinesiol. 2018;42:1–9.CrossRef Ranaldi S, De Marchis C, Conforto S. An automatic, adaptive, information-based algorithm for the extraction of the sEMG envelope. J Electromyogr Kinesiol. 2018;42:1–9.CrossRef
24.
go back to reference Soomro MH, Conforto S, Giunta G, Ranaldi S, De Marchis C. Comparison of initialization techniques for the accurate extraction of muscle synergies from myoelectric signals via nonnegative matrix factorization. Appl Bionics Biomech. 2018;2018:1–10.CrossRef Soomro MH, Conforto S, Giunta G, Ranaldi S, De Marchis C. Comparison of initialization techniques for the accurate extraction of muscle synergies from myoelectric signals via nonnegative matrix factorization. Appl Bionics Biomech. 2018;2018:1–10.CrossRef
25.
go back to reference Varrecchia T, Rinaldi M, Serrao M, Draicchio F, Conte C, Conforto S, et al. Global lower limb muscle coactivation during walking at different speeds: relationship between spatio-temporal, kinematic, kinetic, and energetic parameters. J Electromyogr Kinesiol. 2018;43:148–57.CrossRef Varrecchia T, Rinaldi M, Serrao M, Draicchio F, Conte C, Conforto S, et al. Global lower limb muscle coactivation during walking at different speeds: relationship between spatio-temporal, kinematic, kinetic, and energetic parameters. J Electromyogr Kinesiol. 2018;43:148–57.CrossRef
26.
go back to reference Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10(1):79.CrossRef Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10(1):79.CrossRef
27.
go back to reference Bonnet X, Villa C, Fodé P, Lavaste F, Pillet H. Mechanical work performed by individual limbs of trans-femoral amputees during step-to-step transitions: effect of walking velocity. Proc Inst Mech Eng H J Eng Med. 2013;228(1):60–6.CrossRef Bonnet X, Villa C, Fodé P, Lavaste F, Pillet H. Mechanical work performed by individual limbs of trans-femoral amputees during step-to-step transitions: effect of walking velocity. Proc Inst Mech Eng H J Eng Med. 2013;228(1):60–6.CrossRef
28.
go back to reference Ingraham KA, Fey P, Simon AM, Hargrove LJ. Assessing the relative contributions of active ankle and knee assistance to the walking mechanics of transfemoral amputees using a powered prosthesis. PLoS One. 2016;11(1):e0147661.CrossRef Ingraham KA, Fey P, Simon AM, Hargrove LJ. Assessing the relative contributions of active ankle and knee assistance to the walking mechanics of transfemoral amputees using a powered prosthesis. PLoS One. 2016;11(1):e0147661.CrossRef
29.
go back to reference Silverman AK, Neptune RR. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J Biomech. 2012;45(13):2271–8.CrossRef Silverman AK, Neptune RR. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J Biomech. 2012;45(13):2271–8.CrossRef
Metadata
Title
Modular motor control of the sound limb in gait of people with trans-femoral amputation
Authors
Cristiano De Marchis
Simone Ranaldi
Mariano Serrao
Alberto Ranavolo
Francesco Draicchio
Francesco Lacquaniti
Silvia Conforto
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0616-7

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue