Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Orthosis | Research

Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level

Authors: Niels F. J. Waterval, Frans Nollet, Jaap Harlaar, Merel-Anne Brehm

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

To improve gait, persons with calf muscle weakness can be provided with a dorsal leaf spring ankle foot orthosis (DLS-AFO). These AFOs can store energy during stance and return this energy during push-off, which, in turn, reduces walking energy cost. Simulations indicate that the effect of the DLS-AFO on walking energy cost and gait biomechanics depends on its stiffness and on patient characteristics. We therefore studied the effect of varying DLS-AFO stiffness on reducing walking energy cost, and improving gait biomechanics and AFO generated power in persons with non-spastic calf muscle weakness, and whether the optimal AFO stiffness for maximally reducing walking energy cost varies between persons.

Methods

Thirty-seven individuals with neuromuscular disorders and non-spastic calf muscle weakness were included. Participants were provided with a DLS-AFO of which the stiffness could be varied. For 5 stiffness configurations (ranging from 2.8 to 6.6 Nm/degree), walking energy cost (J/kg/m) was assessed using a 6-min comfortable walk test. Selected gait parameters, e.g. maximal dorsiflexion angle, ankle power, knee angle, knee moment and AFO generated power, were derived from 3D gait analysis.

Results

On group level, no significant effect of DLS-AFO stiffness on reducing walking energy cost was found (p = 0.059, largest difference: 0.14 J/kg/m). The AFO stiffness that reduced energy cost the most varied between persons. The difference in energy cost between the least and most efficient AFO stiffness was on average 10.7%. Regarding gait biomechanics, increasing AFO stiffness significantly decreased maximal ankle dorsiflexion angle (− 1.1 ± 0.1 degrees per 1 Nm/degree, p < 0.001) and peak ankle power (− 0.09 ± 0.01 W/kg, p < 0.001). The reduction in minimal knee angle (− 0.3 ± 0.1 degrees, p = 0.034), and increment in external knee extension moment in stance (− 0.01 ± 0.01 Nm/kg, p = 0.016) were small, although all stiffness’ substantially affected knee angle and knee moment compared to shoes only. No effect of stiffness on AFO generated power was found (p = 0.900).

Conclusions

The optimal efficient DLS-AFO stiffness varied largely between persons with non-spastic calf muscle weakness. Results indicate this is caused by an individual trade-off between ankle angle and ankle power affected differently by AFO stiffness. We therefore recommend that the AFO stiffness should be individually optimized to best improve gait.

Trial registration number

Nederlands Trial Register 5170. Registration date: May 7th 2015. http://​www.​trialregister.​nl/​trialreg/​admin/​rctview.​asp?​TC=​5170
Appendix
Available only for authorised users
Literature
1.
go back to reference Menotti F, Laudani L, Damiani A, Macaluso A. Amount and intensity of daily living activities in Charcot–Marie–tooth 1A patients. Brain Behav. 2014;4(1):14–20.CrossRef Menotti F, Laudani L, Damiani A, Macaluso A. Amount and intensity of daily living activities in Charcot–Marie–tooth 1A patients. Brain Behav. 2014;4(1):14–20.CrossRef
2.
go back to reference Nollet F, Beelen A, Prins MH, de Visser M, Sargeant AJ, Lankhorst GJ, et al. Disability and functional assessment in former polio patients with and without postpolio syndrome. Arch Phys Med Rehabil. 1999;80(2):136–43.CrossRef Nollet F, Beelen A, Prins MH, de Visser M, Sargeant AJ, Lankhorst GJ, et al. Disability and functional assessment in former polio patients with and without postpolio syndrome. Arch Phys Med Rehabil. 1999;80(2):136–43.CrossRef
3.
go back to reference Brehm M-A, Nollet F, Harlaar J. Energy demands of walking in persons with postpoliomyelitis syndrome: relationship with muscle strength and reproducibility. Arch Phys Med Rehabil. 2006;87(1):136–40.CrossRef Brehm M-A, Nollet F, Harlaar J. Energy demands of walking in persons with postpoliomyelitis syndrome: relationship with muscle strength and reproducibility. Arch Phys Med Rehabil. 2006;87(1):136–40.CrossRef
4.
go back to reference Guillebastre B, Calmels P, Rougier PR. Assessment of appropriate ankle-foot Orthoses models for patients with Charcot-Marie-tooth disease. Am J Phys Med Rehab. 2011;90(8):619–27.CrossRef Guillebastre B, Calmels P, Rougier PR. Assessment of appropriate ankle-foot Orthoses models for patients with Charcot-Marie-tooth disease. Am J Phys Med Rehab. 2011;90(8):619–27.CrossRef
5.
go back to reference Menotti F, Felici F, Damiani A, Mangiola F, Vannicelli R, Macaluso A. Charcot-Marie-tooth 1A patients with low level of impairment have a higher energy cost of walking than healthy individuals. Neuromuscul Disord. 2011;21(1):52–7.CrossRef Menotti F, Felici F, Damiani A, Mangiola F, Vannicelli R, Macaluso A. Charcot-Marie-tooth 1A patients with low level of impairment have a higher energy cost of walking than healthy individuals. Neuromuscul Disord. 2011;21(1):52–7.CrossRef
6.
go back to reference Ploeger HE, Bus SA, Nollet F, Brehm M-A. Gait patterns in association with underlying impairments in polio survivors with calf muscle weakness. Gait Posture. 2017;58:146–53.CrossRef Ploeger HE, Bus SA, Nollet F, Brehm M-A. Gait patterns in association with underlying impairments in polio survivors with calf muscle weakness. Gait Posture. 2017;58:146–53.CrossRef
7.
go back to reference Ploeger HE, Bus SA, Brehm M-A, Nollet F. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness. Gait Posture. 2014;40(3):391–8.CrossRef Ploeger HE, Bus SA, Brehm M-A, Nollet F. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness. Gait Posture. 2014;40(3):391–8.CrossRef
8.
go back to reference van der Wilk D, Dijkstra PU, Postema K, Verkerke GJ, Hijmans JM. Effects of ankle foot orthoses on body functions and activities in people with floppy paretic ankle muscles: a systematic review. Clin Biomech. 2015;30(10):1009–25.CrossRef van der Wilk D, Dijkstra PU, Postema K, Verkerke GJ, Hijmans JM. Effects of ankle foot orthoses on body functions and activities in people with floppy paretic ankle muscles: a systematic review. Clin Biomech. 2015;30(10):1009–25.CrossRef
9.
go back to reference Hsu JD, Michael J, Fisk J. AAOS atlas of orthoses and assistive devices. Elsevier Health Sciences; 2008. Hsu JD, Michael J, Fisk J. AAOS atlas of orthoses and assistive devices. Elsevier Health Sciences; 2008.
10.
go back to reference Perry J, Burnfiel JM. Gait analysis; Normal and pathological function. 2nd ed. Thorofare: SLACK Incorporated; 2010. Perry J, Burnfiel JM. Gait analysis; Normal and pathological function. 2nd ed. Thorofare: SLACK Incorporated; 2010.
11.
go back to reference Wolf SI, Alimusaj M, Rettig O, Döderlein L. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait Posture. 2008;28(1):175–7.CrossRef Wolf SI, Alimusaj M, Rettig O, Döderlein L. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait Posture. 2008;28(1):175–7.CrossRef
12.
go back to reference Alimusaj M, Knie I, Wolf S, Fuchs A, Braatz F, Döderlein L. Functional impact of carbon fiber springs in ankle-foot orthoses. Der Orthopade. 2007;36(8):752–6.CrossRef Alimusaj M, Knie I, Wolf S, Fuchs A, Braatz F, Döderlein L. Functional impact of carbon fiber springs in ankle-foot orthoses. Der Orthopade. 2007;36(8):752–6.CrossRef
13.
go back to reference Bartonek Å, Eriksson M, Gutierrez-Farewik EM. Effects of carbon fibre spring orthoses on gait in ambulatory children with motor disorders and plantarflexor weakness. Dev Med Child Neurol. 2007;49(8):615–20.CrossRef Bartonek Å, Eriksson M, Gutierrez-Farewik EM. Effects of carbon fibre spring orthoses on gait in ambulatory children with motor disorders and plantarflexor weakness. Dev Med Child Neurol. 2007;49(8):615–20.CrossRef
14.
go back to reference Kerkum YL, Buizer AI, van den Noort JC, Becher JG, Harlaar J, Brehm M-A. The effects of varying ankle foot Orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS One. 2015;10(11):e0142878.CrossRef Kerkum YL, Buizer AI, van den Noort JC, Becher JG, Harlaar J, Brehm M-A. The effects of varying ankle foot Orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS One. 2015;10(11):e0142878.CrossRef
15.
go back to reference Neptune RR, Kautz S, Zajac F. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001;34(11):1387–98.CrossRef Neptune RR, Kautz S, Zajac F. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001;34(11):1387–98.CrossRef
16.
go back to reference Bregman D, Van der Krogt M, De Groot V, Harlaar J, Wisse M, Collins S. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin Biomech. 2011;26(9):955–61.CrossRef Bregman D, Van der Krogt M, De Groot V, Harlaar J, Wisse M, Collins S. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin Biomech. 2011;26(9):955–61.CrossRef
17.
go back to reference Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015. Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015.
18.
go back to reference Bregman D, Harlaar J, Meskers C, de Groot V. An appropriate stiffness is needed for spring-like ankle foot Orthoses to reduce the energy cost of walking. The Optimal Ankle Foot Orthosis: The influence of mechanical properties of Ankle Foot Orthoses on the walking ability of patients with central neurological disorders 2011. Bregman D, Harlaar J, Meskers C, de Groot V. An appropriate stiffness is needed for spring-like ankle foot Orthoses to reduce the energy cost of walking. The Optimal Ankle Foot Orthosis: The influence of mechanical properties of Ankle Foot Orthoses on the walking ability of patients with central neurological disorders 2011.
19.
go back to reference Harper NG, Esposito ER, Wilken JM, Neptune RR. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clin Biomech. 2014;29(8):877–84.CrossRef Harper NG, Esposito ER, Wilken JM, Neptune RR. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clin Biomech. 2014;29(8):877–84.CrossRef
20.
go back to reference Ploeger H, Brehm M, Bus S, Nollet F. Comparing the effect of a dorsal-leaf-spring AFO and a spring-hinged AFO on gait characteristics in plantarflexor weakness–a pilot study. Gait Posture. 2015;42:S70.CrossRef Ploeger H, Brehm M, Bus S, Nollet F. Comparing the effect of a dorsal-leaf-spring AFO and a spring-hinged AFO on gait characteristics in plantarflexor weakness–a pilot study. Gait Posture. 2015;42:S70.CrossRef
21.
go back to reference Waterval NF, Nollet F, Harlaar J, Brehm M-A. Precision orthotics: optimising ankle foot orthoses to improve gait in patients with neuromuscular diseases; protocol of the PROOF-AFO study, a prospective intervention study. BMJ Open. 2017;7(2):e013342.CrossRef Waterval NF, Nollet F, Harlaar J, Brehm M-A. Precision orthotics: optimising ankle foot orthoses to improve gait in patients with neuromuscular diseases; protocol of the PROOF-AFO study, a prospective intervention study. BMJ Open. 2017;7(2):e013342.CrossRef
22.
go back to reference Bregman D, Rozumalski A, Koops D, De Groot V, Schwartz M, Harlaar J. A new method for evaluating ankle foot orthosis characteristics: BRUCE. Gait Posture. 2009;30(2):144–9.CrossRef Bregman D, Rozumalski A, Koops D, De Groot V, Schwartz M, Harlaar J. A new method for evaluating ankle foot orthosis characteristics: BRUCE. Gait Posture. 2009;30(2):144–9.CrossRef
23.
go back to reference Kerkum YL, Brehm M-A, Buizer AI, van den Noort JC, Becher JG, Harlaar J. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy. J Appl Biomech. 2014;30:728–31.CrossRef Kerkum YL, Brehm M-A, Buizer AI, van den Noort JC, Becher JG, Harlaar J. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy. J Appl Biomech. 2014;30:728–31.CrossRef
24.
go back to reference Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443–4.CrossRef Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443–4.CrossRef
25.
go back to reference Kerkum YL, Harlaar J, Buizer AI, van den Noort JC, Becher JG, Brehm M-A. An individual approach for optimizing ankle-foot orthoses to improve mobility in children with spastic cerebral palsy walking with excessive knee flexion. Gait Posture. 2016;46:104–11.CrossRef Kerkum YL, Harlaar J, Buizer AI, van den Noort JC, Becher JG, Brehm M-A. An individual approach for optimizing ankle-foot orthoses to improve mobility in children with spastic cerebral palsy walking with excessive knee flexion. Gait Posture. 2016;46:104–11.CrossRef
26.
go back to reference Bregman DJJ. The optimal ankle foot orthosis: the influence of mechanical properties of ankle foot Orthoses on the walking ability of patients with central neurological disorders; 2011. Bregman DJJ. The optimal ankle foot orthosis: the influence of mechanical properties of ankle foot Orthoses on the walking ability of patients with central neurological disorders; 2011.
27.
go back to reference Kobayashi T, Leung AK, Akazawa Y, Hutchins SW. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke. Gait Posture. 2013;37(3):457–9.CrossRef Kobayashi T, Leung AK, Akazawa Y, Hutchins SW. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke. Gait Posture. 2013;37(3):457–9.CrossRef
28.
go back to reference Kobayashi T, Leung AK, Akazawa Y, Hutchins SW. Design of a stiffness-adjustable ankle-foot orthosis and its effect on ankle joint kinematics in patients with stroke. Gait Posture. 2011;33(4):721–3.CrossRef Kobayashi T, Leung AK, Akazawa Y, Hutchins SW. Design of a stiffness-adjustable ankle-foot orthosis and its effect on ankle joint kinematics in patients with stroke. Gait Posture. 2011;33(4):721–3.CrossRef
29.
go back to reference Jackson RW, Dembia CL, Delp SL, Collins SH. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. Journal of Experimental Biology. 2017:jeb. 150011. Jackson RW, Dembia CL, Delp SL, Collins SH. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. Journal of Experimental Biology. 2017:jeb. 150011.
30.
go back to reference Brehm M-A, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med. 2008;40(7):529–34.CrossRef Brehm M-A, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med. 2008;40(7):529–34.CrossRef
31.
go back to reference Brehm M-A, Beelen A, Doorenbosch CA, Harlaar J, Nollet F. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients. J Rehabil Med. 2007;39(8):651–7.CrossRef Brehm M-A, Beelen A, Doorenbosch CA, Harlaar J, Nollet F. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients. J Rehabil Med. 2007;39(8):651–7.CrossRef
32.
go back to reference Umberger BR. Stance and swing phase costs in human walking. J R Soc Interface. 2010;7(50):1329–40.CrossRef Umberger BR. Stance and swing phase costs in human walking. J R Soc Interface. 2010;7(50):1329–40.CrossRef
33.
go back to reference Brehm MA, Becher J, Harlaar J. Reproducibility evaluation of gross and net walking efficiency in children with cerebral palsy. Dev Med Child Neurol. 2007;49(1):45–8.CrossRef Brehm MA, Becher J, Harlaar J. Reproducibility evaluation of gross and net walking efficiency in children with cerebral palsy. Dev Med Child Neurol. 2007;49(1):45–8.CrossRef
34.
go back to reference Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017;356(6344):1280–4.CrossRef Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017;356(6344):1280–4.CrossRef
Metadata
Title
Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level
Authors
Niels F. J. Waterval
Frans Nollet
Jaap Harlaar
Merel-Anne Brehm
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Orthosis
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0600-2

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue