Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Electromyographic | Short report

Myoelectric signal from below the level of spinal cord injury as a command source for an implanted upper extremity neuroprosthesis - a case report

Authors: Elizabeth Heald, Kevin Kilgore, Ronald Hart, Christa Moss, P. Hunter Peckham

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Implanted motor neuroprostheses offer significant restoration of function for individuals with spinal cord injury. Providing adequate user control for these devices is a challenge but is crucial for successful performance. Electromyographic (EMG) signals can serve as effective control sources, but the number of above-injury muscles suitable to provide EMG-based control signals is very limited. Previous work has shown the presence of below-injury volitional myoelectric signals even in subjects diagnosed with motor complete spinal cord injury. In this case report, we present a demonstration of a hand grasp neuroprosthesis being controlled by a user with a C6 level, motor complete injury through EMG signals from their toe flexor. These signals were successfully translated into a functional grasp output, which performed similarly to the participant’s usual shoulder position control in a grasp-release functional test. This proof-of-concept demonstrates the potential for below-injury myoelectric activity to serve as a novel form of neuroprosthesis control.
Literature
1.
go back to reference Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008;46(4):255–74.CrossRef Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008;46(4):255–74.CrossRef
2.
go back to reference Kilgore KL, H a H, Bryden AM, Hart RL, Keith MW, Peckham PH. An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am. 2008;33(4):539–50.CrossRef Kilgore KL, H a H, Bryden AM, Hart RL, Keith MW, Peckham PH. An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am. 2008;33(4):539–50.CrossRef
3.
go back to reference Moss CW, Kilgore KL, Peckham PH. A novel command signal for motor neuroprosthetic control. Neurorehabil Neural Repair. 2011;25(9):847–54.CrossRef Moss CW, Kilgore KL, Peckham PH. A novel command signal for motor neuroprosthetic control. Neurorehabil Neural Repair. 2011;25(9):847–54.CrossRef
4.
go back to reference Heald E, Hart R, Kilgore K, Peckham PH. Characterization of volitional Electromyographic signals in the lower extremity after motor complete spinal cord injury. Neurorehabil Neural Repair. 2017 Jun 26;31(6):583–91.CrossRef Heald E, Hart R, Kilgore K, Peckham PH. Characterization of volitional Electromyographic signals in the lower extremity after motor complete spinal cord injury. Neurorehabil Neural Repair. 2017 Jun 26;31(6):583–91.CrossRef
5.
go back to reference Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil. 2001 Oct;82(10):1380–8.CrossRef Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil. 2001 Oct;82(10):1380–8.CrossRef
6.
go back to reference Johnson M, Peckham PH. Evaluation of shoulder movement as a command control source. IEEE Trans Biomed Eng. 1990;37(9):876–85.CrossRef Johnson M, Peckham PH. Evaluation of shoulder movement as a command control source. IEEE Trans Biomed Eng. 1990;37(9):876–85.CrossRef
7.
go back to reference Kilgore KL, Peckham PH, Thrope GB, Keith MW, Gallaher-Stone KA. Synthesis of hand grasp using functional neuromuscular stimulation. IEEE Trans Biomed Eng. 1989 Jul;36(7):761–70.CrossRef Kilgore KL, Peckham PH, Thrope GB, Keith MW, Gallaher-Stone KA. Synthesis of hand grasp using functional neuromuscular stimulation. IEEE Trans Biomed Eng. 1989 Jul;36(7):761–70.CrossRef
8.
go back to reference Hart RL, Kilgore KL, Peckham PH. A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans Rehabil Eng. 1998;6(2):208–18.CrossRef Hart RL, Kilgore KL, Peckham PH. A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans Rehabil Eng. 1998;6(2):208–18.CrossRef
9.
go back to reference Memberg WD, Crago PE. A grasp force and position sensor for the quantitative evaluation of neuroprosthetic hand grasp systems. IEEE Trans Rehabil Eng. 1995 Jun;3(2):175–81.CrossRef Memberg WD, Crago PE. A grasp force and position sensor for the quantitative evaluation of neuroprosthetic hand grasp systems. IEEE Trans Rehabil Eng. 1995 Jun;3(2):175–81.CrossRef
10.
go back to reference Wuolle KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. In: The journal of hand surgery, vol. 19: W.B. Saunders; 1994. Wuolle KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. In: The journal of hand surgery, vol. 19: W.B. Saunders; 1994.
11.
go back to reference Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the grasp and release test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–6.CrossRef Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the grasp and release test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–6.CrossRef
12.
go back to reference Kilgore KL, Bryden A, Keith MW, Hoyen HA, Hart RL, Nemunaitis GA, et al. Evolution of Neuroprosthetic approaches to restoration of upper extremity function in spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24(3):252–64.CrossRef Kilgore KL, Bryden A, Keith MW, Hoyen HA, Hart RL, Nemunaitis GA, et al. Evolution of Neuroprosthetic approaches to restoration of upper extremity function in spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24(3):252–64.CrossRef
13.
go back to reference Saxena S, Nikolić S, Popović D. An EMG-controlled grasping system for tetraplegics. J Rehabil Res Dev. 1995 Feb;32(1):17–24.PubMed Saxena S, Nikolić S, Popović D. An EMG-controlled grasping system for tetraplegics. J Rehabil Res Dev. 1995 Feb;32(1):17–24.PubMed
14.
go back to reference Pierella C, De Luca A, Tasso E, Cervetto F, Gamba S, Losio L, et al. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury. In: 2017 international conference on rehabilitation robotics (ICORR): IEEE; 2017. p. 1100–5. Pierella C, De Luca A, Tasso E, Cervetto F, Gamba S, Losio L, et al. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury. In: 2017 international conference on rehabilitation robotics (ICORR): IEEE; 2017. p. 1100–5.
15.
go back to reference Kilgore K. Hand grasp and reach in spinal cord injury. In: Kilgore K, editor. Implantable neuroprostheses for restoring function. 1st ed: Woodhead Publishing; 2015. Kilgore K. Hand grasp and reach in spinal cord injury. In: Kilgore K, editor. Implantable neuroprostheses for restoring function. 1st ed: Woodhead Publishing; 2015.
16.
go back to reference Wilson RD, Bryden AM, Kilgore KL, Makowski N, Bourbeau D, Kowalski KE, et al. Neuromodulation for functional electrical stimulation. Phys Med Rehabil Clin N Am. 2019 May;30(2):301–18.CrossRef Wilson RD, Bryden AM, Kilgore KL, Makowski N, Bourbeau D, Kowalski KE, et al. Neuromodulation for functional electrical stimulation. Phys Med Rehabil Clin N Am. 2019 May;30(2):301–18.CrossRef
Metadata
Title
Myoelectric signal from below the level of spinal cord injury as a command source for an implanted upper extremity neuroprosthesis - a case report
Authors
Elizabeth Heald
Kevin Kilgore
Ronald Hart
Christa Moss
P. Hunter Peckham
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0571-3

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue