Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Tremor | Review

Need for mechanically and ergonomically enhanced tremor-suppression orthoses for the upper limb: a systematic review

Authors: Nicolas Philip Fromme, Martin Camenzind, Robert Riener, René Michel Rossi

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Introduction

Tremor is the most common movement disorder, affecting 5.6% of the population with Parkinson’s disease or essential tremor over the age of 65. Conventionally, tremor diseases like Parkinson’s are treated with medication. An alternative non-invasive symptom treatment is the mechanical suppression of the oscillation movement. The purpose of this review is to identify the weaknesses of past wearable tremor-suppression orthoses for the upper limb and identify the need for further research and developments.

Method

A systematic literature search was conducted by performing a keyword combination search of the title, abstract and keyword sections in the four databases Web of Science, MedLine, Scopus, and ProQuest. Initially, the retrieved articles were selected by title and abstract using selection criteria. The same criteria were then applied to the full publication text. After the selection process, relevant information on the retrieved orthoses was isolated, sorted and analysed systematically.

Results

Forty-six papers, representing 21 orthoses, were identified and analysed according to the mechanical and ergonomic properties. The identified orthoses can be divided into 5 concepts and 16 functional prototypes, then subdivided further based upon their use of passive, semi-active, or active suppression mechanisms. Most of the orthoses concentrate on the wrist and elbow flexion and extension. They mainly rely on rigid structures and actuators while having tremor-suppression efficacies for tremorous subjects from 30 to 98% using power spectral density or other methods.

Conclusion

The comparison of tremor-suppression orthoses considered and mapped their various mechanical and ergonomic properties, including the degrees of freedom, weight, suppression characteristics, and efficacies. This review shows that most of the orthoses are bulky and heavy, with a non-adapted human-machine interface which can cause rejection by the user. The main challenge of the design of an effective, minimally intrusive and portable tremor-suppressing orthosis is the integration of compact, powerful, lightweight, and non-cumbersome suppression mechanisms. None of the existing prototypes combine all the desired characteristics. Future research should focus on novel suppression orthoses and mechanisms with compact dimensions and light weight in order to be less cumbersome while giving a good tremor-suppression performance.
Literature
1.
go back to reference Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Mov Disord. 1998;13(S3):2–23.PubMedCrossRef Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Mov Disord. 1998;13(S3):2–23.PubMedCrossRef
2.
go back to reference Bötzel K, Tronnier V, Gasser T. The differential diagnosis and treatment of tremor. Dtsch Arztebl Int. 2014;111(13):225–36.PubMedPubMedCentral Bötzel K, Tronnier V, Gasser T. The differential diagnosis and treatment of tremor. Dtsch Arztebl Int. 2014;111(13):225–36.PubMedPubMedCentral
4.
go back to reference Ellrichmann G. Vorkommen und Wertigkeit von Oberfrequenzen in der 24-Stunden-Elektromyographie und Accelerometrie. Doctoral dissertation. Bochum: Ruhr University; 2007. Ellrichmann G. Vorkommen und Wertigkeit von Oberfrequenzen in der 24-Stunden-Elektromyographie und Accelerometrie. Doctoral dissertation. Bochum: Ruhr University; 2007.
5.
go back to reference Raethjen J, Lindemann M, Schmajohann H, Wenzelburger R, Pfister G, Deuschl G. Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord. 2000;15(1):84–94.PubMedCrossRef Raethjen J, Lindemann M, Schmajohann H, Wenzelburger R, Pfister G, Deuschl G. Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord. 2000;15(1):84–94.PubMedCrossRef
6.
go back to reference Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010 Apr 15;25(5):534–41.PubMedCrossRef Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010 Apr 15;25(5):534–41.PubMedCrossRef
7.
go back to reference de Rijk MC, Breteler MM, Graveland GA, Ott A, Grobbee DE, van der Meché FG, et al. Prevalence of Parkinson’s disease in the elderly: the Rotterdam study. Neurology. 1995;45(12):2143–6.PubMedCrossRef de Rijk MC, Breteler MM, Graveland GA, Ott A, Grobbee DE, van der Meché FG, et al. Prevalence of Parkinson’s disease in the elderly: the Rotterdam study. Neurology. 1995;45(12):2143–6.PubMedCrossRef
8.
go back to reference Lopez-de-Ipiña K, Bergareche A, de la Riva P, Faundez-Zanuy M, Calvo PM, Roure J, et al. Automatic non-linear analysis of non-invasive writing signals, applied to essential tremor. J Appl Log. 2014;16:50–9.CrossRef Lopez-de-Ipiña K, Bergareche A, de la Riva P, Faundez-Zanuy M, Calvo PM, Roure J, et al. Automatic non-linear analysis of non-invasive writing signals, applied to essential tremor. J Appl Log. 2014;16:50–9.CrossRef
9.
go back to reference Eurostat. Population structure and ageing - Eurostat. 2018. Eurostat. Population structure and ageing - Eurostat. 2018.
10.
go back to reference Grimaldi G, Manto M. “Old” and emerging therapies of human tremor. Clin Med Insights Ther. 2010;2:CMT.S2999.CrossRef Grimaldi G, Manto M. “Old” and emerging therapies of human tremor. Clin Med Insights Ther. 2010;2:CMT.S2999.CrossRef
11.
go back to reference Miller KM, Okun MS, Fernandez HF, Jacobson CE IV, Rodriguez RL, Bowers D. Depression symptoms in movement disorders: comparing Parkinson’s disease, dystonia, and essential tremor. Mov Disord. 2007;22(5):666–72.PubMedCrossRef Miller KM, Okun MS, Fernandez HF, Jacobson CE IV, Rodriguez RL, Bowers D. Depression symptoms in movement disorders: comparing Parkinson’s disease, dystonia, and essential tremor. Mov Disord. 2007;22(5):666–72.PubMedCrossRef
12.
go back to reference Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedCrossRef Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedCrossRef
13.
go back to reference Cohen O, Pullman S, Jurewicz E, Watner D, Louis ED. Rest tremor in patients with essential tremor: prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003;60(3):405–10.PubMedCrossRef Cohen O, Pullman S, Jurewicz E, Watner D, Louis ED. Rest tremor in patients with essential tremor: prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003;60(3):405–10.PubMedCrossRef
14.
go back to reference Gerlach M, Reichmann H, Riederer P, Dietmaier O, Götz W, Laux G, et al. Die Parkinson-Krankheit. Vienna: Springer Vienna; 2007.CrossRef Gerlach M, Reichmann H, Riederer P, Dietmaier O, Götz W, Laux G, et al. Die Parkinson-Krankheit. Vienna: Springer Vienna; 2007.CrossRef
15.
go back to reference Rana AQ, Chou KL. Essential tremor in clinical practice. Cham: Springer International Publishing; 2015. (In Clinical Practice)CrossRef Rana AQ, Chou KL. Essential tremor in clinical practice. Cham: Springer International Publishing; 2015. (In Clinical Practice)CrossRef
16.
go back to reference Ruonala V, Meigal A, Rissanen SM, Airaksinen O, Kankaanpää M, Karjalainen PA. EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients. J Electromyogr Kinesiol. 2014;24(2):300–6.PubMedCrossRef Ruonala V, Meigal A, Rissanen SM, Airaksinen O, Kankaanpää M, Karjalainen PA. EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients. J Electromyogr Kinesiol. 2014;24(2):300–6.PubMedCrossRef
17.
go back to reference O’Connor RJ, Kini MU. Non-pharmacological and non-surgical interventions for tremor: a systematic review. Park Relat Disord. 2011;17(7):509–15.CrossRef O’Connor RJ, Kini MU. Non-pharmacological and non-surgical interventions for tremor: a systematic review. Park Relat Disord. 2011;17(7):509–15.CrossRef
18.
go back to reference Diaz NL, Louis ED. Survey of medication usage patterns among essential tremor patients: movement disorder specialists vs. general neurologists. Park Relat Disord. 2010;16(9):604–7.CrossRef Diaz NL, Louis ED. Survey of medication usage patterns among essential tremor patients: movement disorder specialists vs. general neurologists. Park Relat Disord. 2010;16(9):604–7.CrossRef
19.
go back to reference Hariz MI, Rehncrona S, Quinn NP, Speelman JD, Wensing C. Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov Disord. 2008;23(3):416–21.PubMedCrossRef Hariz MI, Rehncrona S, Quinn NP, Speelman JD, Wensing C. Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov Disord. 2008;23(3):416–21.PubMedCrossRef
20.
21.
go back to reference Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(3):464–8.PubMedCrossRef Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(3):464–8.PubMedCrossRef
22.
go back to reference Sasso E, Perucca E, Fava R, Calzetti S. Primidone in the long-term treatment of essential tremor: a prospective study with computerized quantitative analysis. Clin Neuropharmacol. 1990;13(1):67–76.PubMedCrossRef Sasso E, Perucca E, Fava R, Calzetti S. Primidone in the long-term treatment of essential tremor: a prospective study with computerized quantitative analysis. Clin Neuropharmacol. 1990;13(1):67–76.PubMedCrossRef
23.
go back to reference Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, et al. A prospective trial of magnetic resonance–guided focused ultrasound thalamotomy for essential tremor: results at the 2-year follow-up. Ann Neurol. 2018;83(1):107–14.PubMedCrossRef Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, et al. A prospective trial of magnetic resonance–guided focused ultrasound thalamotomy for essential tremor: results at the 2-year follow-up. Ann Neurol. 2018;83(1):107–14.PubMedCrossRef
24.
go back to reference Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.PubMedCrossRef Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.PubMedCrossRef
25.
go back to reference Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(1):12.CrossRef Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(1):12.CrossRef
26.
go back to reference Keus SHJ, Munneke M, Nijkrake MJ, Kwakkel G, Bloem BR. Physical therapy in Parkinson’s disease: evolution and future challenges. Mov Disord. 2009;24(1):1–14.PubMedCrossRef Keus SHJ, Munneke M, Nijkrake MJ, Kwakkel G, Bloem BR. Physical therapy in Parkinson’s disease: evolution and future challenges. Mov Disord. 2009;24(1):1–14.PubMedCrossRef
27.
go back to reference Pons JL. Wearable robots : biomechatronic exoskeletons. Chichester: John Wiley & Sons Ltd; 2008.CrossRef Pons JL. Wearable robots : biomechatronic exoskeletons. Chichester: John Wiley & Sons Ltd; 2008.CrossRef
28.
go back to reference Manto M, Rocon E, Pons J, Belda JM, Camut S. Evaluation of a wearable orthosis and an associated algorithm for tremor suppression. Physiol Meas. 2007;28(4):415–25.PubMedCrossRef Manto M, Rocon E, Pons J, Belda JM, Camut S. Evaluation of a wearable orthosis and an associated algorithm for tremor suppression. Physiol Meas. 2007;28(4):415–25.PubMedCrossRef
29.
go back to reference Hellwig B, Mund P, Schelter B, Guschlbauer B, Timmer J, Lücking CH. A longitudinal study of tremor frequencies in Parkinson’s disease and essential tremor. Clin Neurophysiol. 2009;120(2):431–5.PubMedCrossRef Hellwig B, Mund P, Schelter B, Guschlbauer B, Timmer J, Lücking CH. A longitudinal study of tremor frequencies in Parkinson’s disease and essential tremor. Clin Neurophysiol. 2009;120(2):431–5.PubMedCrossRef
30.
go back to reference Geiger DW. Characterization of postural tremor in essential tremor using a seven-degree-of-freedom model. Provo: Master Thesis, Brigham Young University; 2014. Geiger DW. Characterization of postural tremor in essential tremor using a seven-degree-of-freedom model. Provo: Master Thesis, Brigham Young University; 2014.
31.
go back to reference Belda-Lois JM, Rocon E, Sanchez-Lacuesta JJ, Ruiz AF, Pons JL. Estimation of biomechanical characteristics of tremorous movements based on gyroscopes. Assist Technol-from Virtuality Real. 2005;16:138–42. Belda-Lois JM, Rocon E, Sanchez-Lacuesta JJ, Ruiz AF, Pons JL. Estimation of biomechanical characteristics of tremorous movements based on gyroscopes. Assist Technol-from Virtuality Real. 2005;16:138–42.
32.
go back to reference Rocon E, Pons JL. Exoskeletons in Rehabilitation Robotics. Springer Tracts in Advanced Robotics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. (Springer Tracts in Advanced Robotics; vol. 69)CrossRef Rocon E, Pons JL. Exoskeletons in Rehabilitation Robotics. Springer Tracts in Advanced Robotics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. (Springer Tracts in Advanced Robotics; vol. 69)CrossRef
33.
go back to reference Schiele A, van der Helm FCT. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng. 2006;14(4):456–69.PubMedCrossRef Schiele A, van der Helm FCT. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng. 2006;14(4):456–69.PubMedCrossRef
34.
go back to reference Lakie M, Vernooij CA, Osborne TM, Reynolds RF. The resonant component of human physiological hand tremor is altered by slow voluntary movements. J Physiol. 2012;590(10):2471–83.PubMedPubMedCentralCrossRef Lakie M, Vernooij CA, Osborne TM, Reynolds RF. The resonant component of human physiological hand tremor is altered by slow voluntary movements. J Physiol. 2012;590(10):2471–83.PubMedPubMedCentralCrossRef
35.
go back to reference Lakie M, Vernooij CA, Osler CJ, Stevenson AT, Scott JPR, Reynolds RF. Increased gravitational force reveals the mechanical, resonant nature of physiological tremor. J Physiol. 2015;593(19):4411–22.PubMedPubMedCentralCrossRef Lakie M, Vernooij CA, Osler CJ, Stevenson AT, Scott JPR, Reynolds RF. Increased gravitational force reveals the mechanical, resonant nature of physiological tremor. J Physiol. 2015;593(19):4411–22.PubMedPubMedCentralCrossRef
36.
go back to reference Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57.PubMedCrossRef Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57.PubMedCrossRef
37.
go back to reference Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron. 2007;12(4):408–17.CrossRef Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron. 2007;12(4):408–17.CrossRef
38.
go back to reference Herrnstadt G, Menon C. Elbow orthosis for tremor suppression – a torque based input case. In: Bioinformatics and biomedical engineering IWBBIO 2017 lecture notes in computer science. Berlin Heidelberg: Springer International Publishing AG; 2017. p. 292–302. Herrnstadt G, Menon C. Elbow orthosis for tremor suppression – a torque based input case. In: Bioinformatics and biomedical engineering IWBBIO 2017 lecture notes in computer science. Berlin Heidelberg: Springer International Publishing AG; 2017. p. 292–302.
39.
go back to reference Herrnstadt G, Menon C. Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol. 2016;4(March):29.PubMedPubMedCentral Herrnstadt G, Menon C. Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol. 2016;4(March):29.PubMedPubMedCentral
40.
go back to reference Herrnstadt G, Menon C. Admittance-based voluntary-driven motion with speed-controlled tremor rejection. IEEE/ASME Trans Mechatron. 2016;21(4):2108–19.CrossRef Herrnstadt G, Menon C. Admittance-based voluntary-driven motion with speed-controlled tremor rejection. IEEE/ASME Trans Mechatron. 2016;21(4):2108–19.CrossRef
41.
go back to reference Seki M, Matsumoto Y, Ando T, Kobayashi Y, Iijima H, Nagaoka M, et al. The weight load inconsistency effect on voluntary movement recognition of essential tremor patient. In: 2011 IEEE international conference on Robotics and biomimetics, ROBIO 2011; 2011. p. 901–7.CrossRef Seki M, Matsumoto Y, Ando T, Kobayashi Y, Iijima H, Nagaoka M, et al. The weight load inconsistency effect on voluntary movement recognition of essential tremor patient. In: 2011 IEEE international conference on Robotics and biomimetics, ROBIO 2011; 2011. p. 901–7.CrossRef
42.
go back to reference Ando T, Watanabe M, Nishimoto K, Matsumoto Y, Seki M, Fujie MG. Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using STFTs and TDNN. J Robot Mechatron. 2012;24(1):141–9.CrossRef Ando T, Watanabe M, Nishimoto K, Matsumoto Y, Seki M, Fujie MG. Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using STFTs and TDNN. J Robot Mechatron. 2012;24(1):141–9.CrossRef
43.
go back to reference Ando T, Watanabe M, Fujie MG. Extraction of voluntary movement for an EMG controlled exoskeltal robot of tremor patients. In: 2009 4th international IEEE/EMBS conference on neural engineering, NER ‘09; 2009. p. 120–3.CrossRef Ando T, Watanabe M, Fujie MG. Extraction of voluntary movement for an EMG controlled exoskeltal robot of tremor patients. In: 2009 4th international IEEE/EMBS conference on neural engineering, NER ‘09; 2009. p. 120–3.CrossRef
44.
go back to reference Seki M, Matsumoto Y, Ando T, Kobayashi Y, Fujie MG, Iijima H, et al. Development of robotic upper limb orthosis with tremor suppressiblity and elbow joint movability. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics; 2011. p. 729–35. Seki M, Matsumoto Y, Ando T, Kobayashi Y, Fujie MG, Iijima H, et al. Development of robotic upper limb orthosis with tremor suppressiblity and elbow joint movability. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics; 2011. p. 729–35.
45.
go back to reference Matsumoto Y, Seki M, Ando T, Kobayashi Y, Nakashima Y, Iijima H, et al. Development of an exoskeleton to support eating movements in patients with essential tremor. J Robot Mechatron. 2013;25(6):949–58.CrossRef Matsumoto Y, Seki M, Ando T, Kobayashi Y, Nakashima Y, Iijima H, et al. Development of an exoskeleton to support eating movements in patients with essential tremor. J Robot Mechatron. 2013;25(6):949–58.CrossRef
46.
go back to reference Matsumoto Y, Amemiya M, Kaneishi D, Nakashima Y, Seki M, Ando T, et al. Development of an elbow-forearm interlock joint mechanism toward an exoskeleton for patients with essential tremor. In: IEEE International Conference on Intelligent Robots and Systems. Institute of Electrical and Electronics Engineers Inc; 2014. p. 2055–62. Matsumoto Y, Amemiya M, Kaneishi D, Nakashima Y, Seki M, Ando T, et al. Development of an elbow-forearm interlock joint mechanism toward an exoskeleton for patients with essential tremor. In: IEEE International Conference on Intelligent Robots and Systems. Institute of Electrical and Electronics Engineers Inc; 2014. p. 2055–62.
47.
go back to reference Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: validation. In: Vol. 69, Springer Tracts in Advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 99–111. Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: validation. In: Vol. 69, Springer Tracts in Advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 99–111.
48.
go back to reference Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: cognitive HR interaction. In: Springer tracts in advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 53–65. Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: cognitive HR interaction. In: Springer tracts in advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 53–65.
49.
go back to reference Belda-Lois J, Martinez-Reyero A, Castillo A, Rocon E, Pons J, Loureiro R. Controllable mechanical tremor reduction. Assessment of two orthoses. Technol Disabil. 2007;19(4):169–78.CrossRef Belda-Lois J, Martinez-Reyero A, Castillo A, Rocon E, Pons J, Loureiro R. Controllable mechanical tremor reduction. Assessment of two orthoses. Technol Disabil. 2007;19(4):169–78.CrossRef
50.
go back to reference Rocon E, Ruiz AF, Brunetti F, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. On the use of an active wearable exoskeleton for tremor suppression via biomechanical loading. In: Proceedings - IEEE International Conference on Robotics and Automation; 2006. p. 3140–5. Rocon E, Ruiz AF, Brunetti F, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. On the use of an active wearable exoskeleton for tremor suppression via biomechanical loading. In: Proceedings - IEEE International Conference on Robotics and Automation; 2006. p. 3140–5.
51.
go back to reference Rocon E, Ruiz AF, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Proceedings - IEEE International Conference on Robotics and Automation; 2005. p. 2271–6. Rocon E, Ruiz AF, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Proceedings - IEEE International Conference on Robotics and Automation; 2005. p. 2271–6.
52.
go back to reference Rocon E, Gallego JA, Belda-Lois JM, Pons JL. Assistive robotics as alternative treatment for tremor. In: Sanfeliu A, Ferre M, Armada MA, editors. Vol. 252, Advances in Intelligent Systems and Computing. Cham: Springer Verlag; 2014. p. 173–9. Rocon E, Gallego JA, Belda-Lois JM, Pons JL. Assistive robotics as alternative treatment for tremor. In: Sanfeliu A, Ferre M, Armada MA, editors. Vol. 252, Advances in Intelligent Systems and Computing. Cham: Springer Verlag; 2014. p. 173–9.
53.
go back to reference Rocon E, Belda-Lois J, Sanchez-Lacuesta J, Pons J. Pathological tremor management: modelling, compensatory technology and evaluation. Technol Disabil. 2004;16(1):3–18.CrossRef Rocon E, Belda-Lois J, Sanchez-Lacuesta J, Pons J. Pathological tremor management: modelling, compensatory technology and evaluation. Technol Disabil. 2004;16(1):3–18.CrossRef
54.
go back to reference Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):367–78.PubMedCrossRef Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):367–78.PubMedCrossRef
55.
go back to reference Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: Physical HR interaction. In: Vol. 69, Springer Tracts in Advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 67–98. Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: Physical HR interaction. In: Vol. 69, Springer Tracts in Advanced Robotics. Berlin Heidelberg: Springer Verlag; 2011. p. 67–98.
56.
go back to reference Rocon E, Manto M, Pons J, Camut S, Belda JM. Mechanical suppression of essential tremor. Cerebellum. 2007;6(1):73–8.PubMedCrossRef Rocon E, Manto M, Pons J, Camut S, Belda JM. Mechanical suppression of essential tremor. Cerebellum. 2007;6(1):73–8.PubMedCrossRef
57.
go back to reference Huen D, Liu J, Lo B. An integrated wearable robot for tremor suppression with context aware sensing. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). Piscataway: IEEE; 2016. p. 312–7.CrossRef Huen D, Liu J, Lo B. An integrated wearable robot for tremor suppression with context aware sensing. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). Piscataway: IEEE; 2016. p. 312–7.CrossRef
58.
go back to reference Zhou Y, Naish MD, Jenkins ME, Trejos AL. Design and validation of a novel mechatronic transmission system for a wearable tremor suppression device. Rob Auton Syst. 2017;91:38–48.CrossRef Zhou Y, Naish MD, Jenkins ME, Trejos AL. Design and validation of a novel mechatronic transmission system for a wearable tremor suppression device. Rob Auton Syst. 2017;91:38–48.CrossRef
59.
go back to reference Zamanian AH, Richer E. Adaptive disturbance rejection controller for pathological tremor suppression with permanent magnet linear motor. In: ASME 2017 dynamic systems and control conference. Tysons; 2017. p. V001T37A003. Zamanian AH, Richer E. Adaptive disturbance rejection controller for pathological tremor suppression with permanent magnet linear motor. In: ASME 2017 dynamic systems and control conference. Tysons; 2017. p. V001T37A003.
60.
go back to reference Taheri B, Case D, Richer E. Robust controller for tremor suppression at musculoskeletal level in human wrist. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):379–88.PubMedCrossRef Taheri B, Case D, Richer E. Robust controller for tremor suppression at musculoskeletal level in human wrist. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):379–88.PubMedCrossRef
61.
go back to reference Taheri B, Case D, Richer E. Active tremor estimation and suppression in human elbow joint. In: ASME 2011 dynamic systems and control conference and Bath/ASME symposium on fluid power and motion control. New York: ASME; 2011. p. 115–20. Taheri B, Case D, Richer E. Active tremor estimation and suppression in human elbow joint. In: ASME 2011 dynamic systems and control conference and Bath/ASME symposium on fluid power and motion control. New York: ASME; 2011. p. 115–20.
62.
go back to reference Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatron. 2015;20(2):717–27.CrossRef Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatron. 2015;20(2):717–27.CrossRef
63.
go back to reference Taheri B, Case D, Richer E. Theoretical development and experimental validation of an adaptive controller for tremor suppression at musculoskeletal level. In: ASME 2013 Dynamic Systems and Control Conference. New York: ASME; 2013. p. V002T22A005. Taheri B, Case D, Richer E. Theoretical development and experimental validation of an adaptive controller for tremor suppression at musculoskeletal level. In: ASME 2013 Dynamic Systems and Control Conference. New York: ASME; 2013. p. V002T22A005.
64.
go back to reference Taheri B. Real-time pathological tremor identification and suppression in human arm via active orthotic devices. Ann Arbor: Doctoral dissertation, Southern Methodist University; 2013. Taheri B. Real-time pathological tremor identification and suppression in human arm via active orthotic devices. Ann Arbor: Doctoral dissertation, Southern Methodist University; 2013.
65.
go back to reference Case D, Taheri B, Richer E. Multiphysics modeling of magnetorheological dampers. Int J Multiphys. 2013;7(1):61–76.CrossRef Case D, Taheri B, Richer E. Multiphysics modeling of magnetorheological dampers. Int J Multiphys. 2013;7(1):61–76.CrossRef
66.
go back to reference Case D, Taheri B, Richer E. Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE/ASME Trans Mechatron. 2013;18(1):96–103.CrossRef Case D, Taheri B, Richer E. Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE/ASME Trans Mechatron. 2013;18(1):96–103.CrossRef
67.
go back to reference Case D, Taheri B, Richer E. Active control of MR wearable robotic orthosis for pathological tremor suppression. In: ASME 2015 dynamic systems and control conference. New York: ASME; 2015. p. V003T42A004. Case D, Taheri B, Richer E. Active control of MR wearable robotic orthosis for pathological tremor suppression. In: ASME 2015 dynamic systems and control conference. New York: ASME; 2015. p. V003T42A004.
68.
go back to reference Case D, Taheri B, Richer E. A lumped-parameter model for adaptive dynamic MR damper control. IEEE/ASME Trans Mechatron. 2015;20(4):1689–96.CrossRef Case D, Taheri B, Richer E. A lumped-parameter model for adaptive dynamic MR damper control. IEEE/ASME Trans Mechatron. 2015;20(4):1689–96.CrossRef
69.
go back to reference Case D, Taheri B, Richer E. Dynamical modeling and experimental study of a small-scale magnetorheological damper. IEEE/ASME Trans Mechatron. 2014;19(3):1015–24.CrossRef Case D, Taheri B, Richer E. Dynamical modeling and experimental study of a small-scale magnetorheological damper. IEEE/ASME Trans Mechatron. 2014;19(3):1015–24.CrossRef
70.
go back to reference Case D, Taheri B, Richer E. Dynamic magnetorheological damper for orthotic tremor suppression. HUIC Mathematics & Engineering; 2011. Case D, Taheri B, Richer E. Dynamic magnetorheological damper for orthotic tremor suppression. HUIC Mathematics & Engineering; 2011.
71.
go back to reference Herrnstadt G, Menon C. On-off tremor suppression orthosis with electromagnetic brake. Int J Mech Eng Mechatron. 2013;1(2):7–14. Herrnstadt G, Menon C. On-off tremor suppression orthosis with electromagnetic brake. Int J Mech Eng Mechatron. 2013;1(2):7–14.
72.
go back to reference Kalaiarasi A, Kumar LA. Sensor based portable tremor suppression device for stroke patients. Acupunct Electrother Res. 2018;43(1):29–37.CrossRef Kalaiarasi A, Kumar LA. Sensor based portable tremor suppression device for stroke patients. Acupunct Electrother Res. 2018;43(1):29–37.CrossRef
73.
go back to reference Loureiro RCV, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: Proceedings of the 2005 IEEE 9th international conference on Rehabilitation Robotics. Piscataway: IEEE; 2005. p. 119–22. Loureiro RCV, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: Proceedings of the 2005 IEEE 9th international conference on Rehabilitation Robotics. Piscataway: IEEE; 2005. p. 119–22.
74.
go back to reference Kotovsky J, Rosen MJ. A wearable tremor-suppression orthosis. J Appl Phys. 1998;35(4):373–87. Kotovsky J, Rosen MJ. A wearable tremor-suppression orthosis. J Appl Phys. 1998;35(4):373–87.
75.
go back to reference Takanokura M, Sugahara R, Miyake N, Ishiguro K, Muto T, Sakamoto K. Upper-limb orthoses implemented with air dashpots for suppression of pathological tremor in daily activites. In: ISB conference July 2011. Brussel; 2011. p. 3–4. Takanokura M, Sugahara R, Miyake N, Ishiguro K, Muto T, Sakamoto K. Upper-limb orthoses implemented with air dashpots for suppression of pathological tremor in daily activites. In: ISB conference July 2011. Brussel; 2011. p. 3–4.
76.
go back to reference Katz R, Buki E, Zacksenhouse M. Attenuating tremor using passive devices. In: Vol. 242, Studies in health technology and informatics. Amsterdam: IOS Press; 2017. p. 741–7. Katz R, Buki E, Zacksenhouse M. Attenuating tremor using passive devices. In: Vol. 242, Studies in health technology and informatics. Amsterdam: IOS Press; 2017. p. 741–7.
77.
go back to reference Swallow LM, Luo JK, Siores E, Patel I, Dodds D. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct. 2008;17(2):025017.CrossRef Swallow LM, Luo JK, Siores E, Patel I, Dodds D. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct. 2008;17(2):025017.CrossRef
78.
go back to reference Swallow L, Siores E. Tremor suppression ssing smart textile fibre systems. J Fiber Bioeng Informatics. 2009;1(4):261–6. Swallow L, Siores E. Tremor suppression ssing smart textile fibre systems. J Fiber Bioeng Informatics. 2009;1(4):261–6.
79.
go back to reference Kelley CR, Kauffman JL. In: Bar-Cohen Y, editor. Exploring dielectric elastomers as actuators for hand tremor suppression. Bellingham: SPIE; 2017. p. 1016322. Kelley CR, Kauffman JL. In: Bar-Cohen Y, editor. Exploring dielectric elastomers as actuators for hand tremor suppression. Bellingham: SPIE; 2017. p. 1016322.
80.
go back to reference Chuanasa J, Songschon S. Anti-shaker simulation for arm tremor. Circuits, Syst Simul. 2011;7:96–100. Chuanasa J, Songschon S. Anti-shaker simulation for arm tremor. Circuits, Syst Simul. 2011;7:96–100.
81.
go back to reference Li JQ, Zang XZ, Zhao J. Tremor suppression method via magnetorheological damper and fuzzy neural network control. J Donghua Univ. 2010;27(4):486–90. Li JQ, Zang XZ, Zhao J. Tremor suppression method via magnetorheological damper and fuzzy neural network control. J Donghua Univ. 2010;27(4):486–90.
82.
go back to reference Shamroukh M, Kalimullah IQ, Chacko A, Barlingay SS, Kalaichelvi V, Chattopadhyay AB. Evaluation of control strategies in semi-active orthosis for suppression of upper limb pathological tremors. In: 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). Piscataway: IEEE; 2017. p. 75–80.CrossRef Shamroukh M, Kalimullah IQ, Chacko A, Barlingay SS, Kalaichelvi V, Chattopadhyay AB. Evaluation of control strategies in semi-active orthosis for suppression of upper limb pathological tremors. In: 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). Piscataway: IEEE; 2017. p. 75–80.CrossRef
83.
go back to reference Hollerbach JM, Hunter I, Ballantyne J. A comparative analysis of actuator technologies for robotics. In: Vol. 2, The Robotics Review; 1991. p. 299–342. Hollerbach JM, Hunter I, Ballantyne J. A comparative analysis of actuator technologies for robotics. In: Vol. 2, The Robotics Review; 1991. p. 299–342.
84.
go back to reference Hunter IW, Lafontaine S. A comparison of muscle with artificial actuators. In: Technical Digest IEEE Solid-State Sensor and Actuator Workshop. Piscataway: IEEE; 1992. p. 178–85.CrossRef Hunter IW, Lafontaine S. A comparison of muscle with artificial actuators. In: Technical Digest IEEE Solid-State Sensor and Actuator Workshop. Piscataway: IEEE; 1992. p. 178–85.CrossRef
86.
go back to reference Yusop MYM. Energy saving for pneumatic actuation using dynamic model prediction. Cardiff: Doctoral dissertation, Cardiff University; 2006. Yusop MYM. Energy saving for pneumatic actuation using dynamic model prediction. Cardiff: Doctoral dissertation, Cardiff University; 2006.
87.
go back to reference Maurel W. 3D modeling of the human upper limb including the biomechanics of joints, muscles and soft tissues. Biomechanics. 1999;1906(1906):206. Maurel W. 3D modeling of the human upper limb including the biomechanics of joints, muscles and soft tissues. Biomechanics. 1999;1906(1906):206.
88.
go back to reference Fung Y-C. Bioviscoelastic solids. In: Biomechanics. New York: Springer New York; 1993. p. 242–320.CrossRef Fung Y-C. Bioviscoelastic solids. In: Biomechanics. New York: Springer New York; 1993. p. 242–320.CrossRef
89.
go back to reference Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, et al. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Front Neurosci. 2017;11(APR):1–11. Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, et al. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Front Neurosci. 2017;11(APR):1–11.
90.
go back to reference Byström S, Hall C, Welander T, Kilbom Å. Clinical disorders and pressure-pain threshold of the forearm and hand among automobile assembly line workers. J Hand Surg Am. 1995;20(6):782–90.CrossRef Byström S, Hall C, Welander T, Kilbom Å. Clinical disorders and pressure-pain threshold of the forearm and hand among automobile assembly line workers. J Hand Surg Am. 1995;20(6):782–90.CrossRef
91.
go back to reference Hendriks CP, Franklin SE. Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol Lett. 2010;37(2):361–73.CrossRef Hendriks CP, Franklin SE. Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol Lett. 2010;37(2):361–73.CrossRef
92.
go back to reference Dąbrowska AK, Adlhart C, Spano F, Rotaru G-M, Derler S, Zhai L, et al. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment. Biointerphases. 2016;11(3):031015.PubMedCrossRef Dąbrowska AK, Adlhart C, Spano F, Rotaru G-M, Derler S, Zhai L, et al. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment. Biointerphases. 2016;11(3):031015.PubMedCrossRef
93.
go back to reference Neu CP, Crisco JJ, Wolfe SW. In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J Biomech. 2001;34(11):1429–38.PubMedCrossRef Neu CP, Crisco JJ, Wolfe SW. In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J Biomech. 2001;34(11):1429–38.PubMedCrossRef
94.
go back to reference Veale AJ, Xie SQ. Towards compliant and wearable robotic orthoses: a review of current and emerging actuator technologies. Med Eng Phys. 2016;38(4):317–25.PubMedCrossRef Veale AJ, Xie SQ. Towards compliant and wearable robotic orthoses: a review of current and emerging actuator technologies. Med Eng Phys. 2016;38(4):317–25.PubMedCrossRef
95.
go back to reference Charles SK, Geiger DW, Davidson AD, Pigg AC, Curtis CP, Allen BC. Toward quantitative characterization of essential tremor for future tremor suppression. IEEE Int Conf Rehabil Robot. 2017;16:175–80. Charles SK, Geiger DW, Davidson AD, Pigg AC, Curtis CP, Allen BC. Toward quantitative characterization of essential tremor for future tremor suppression. IEEE Int Conf Rehabil Robot. 2017;16:175–80.
96.
go back to reference Elble RJ, Koller WC. Tremor (Johns Hopkins series in contemporary medicine and public health). Baltimore: The Johns Hopkins University Press; 1990. Elble RJ, Koller WC. Tremor (Johns Hopkins series in contemporary medicine and public health). Baltimore: The Johns Hopkins University Press; 1990.
97.
go back to reference Hofmann UAT, Butzer T, Lambercy O, Gassert R. Design and evaluation of a bowden-cable-based remote actuation system for wearable robotics. IEEE Robot Autom Lett. 2018;3(3):1–1.CrossRef Hofmann UAT, Butzer T, Lambercy O, Gassert R. Design and evaluation of a bowden-cable-based remote actuation system for wearable robotics. IEEE Robot Autom Lett. 2018;3(3):1–1.CrossRef
98.
go back to reference Clauser CE, McConville JT, Young JW. Weight, volume, and center of mass of segments of the human body. National Technical Information Service; 1969.CrossRef Clauser CE, McConville JT, Young JW. Weight, volume, and center of mass of segments of the human body. National Technical Information Service; 1969.CrossRef
99.
go back to reference Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of nations: an estimation of adult human biomass. BMC Public Health. 2012;12(1):1.CrossRef Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of nations: an estimation of adult human biomass. BMC Public Health. 2012;12(1):1.CrossRef
100.
go back to reference Rocon E, Gallego JÁ, Belda-Lois JM, Benito-León J, Luis Pons J. Biomechanical loading as an alternative treatment for tremor: a review of two approaches. Tremor Other Hyperkinet Mov. 2012;2(March):1–13. Rocon E, Gallego JÁ, Belda-Lois JM, Benito-León J, Luis Pons J. Biomechanical loading as an alternative treatment for tremor: a review of two approaches. Tremor Other Hyperkinet Mov. 2012;2(March):1–13.
101.
go back to reference Yusif S, Soar J, Hafeez-Baig A. Older people, assistive technologies, and the barriers to adoption: a systematic review. Int J Med Inform. 2016;94:112–6.PubMedCrossRef Yusif S, Soar J, Hafeez-Baig A. Older people, assistive technologies, and the barriers to adoption: a systematic review. Int J Med Inform. 2016;94:112–6.PubMedCrossRef
102.
go back to reference Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot. 2018;3(14):eaar3276.CrossRefPubMed Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot. 2018;3(14):eaar3276.CrossRefPubMed
103.
go back to reference Chen D, Pei Q. Electronic muscles and skins: a review of soft sensors and actuators. Chem Rev. 2017;117(17):11239–68.PubMedCrossRef Chen D, Pei Q. Electronic muscles and skins: a review of soft sensors and actuators. Chem Rev. 2017;117(17):11239–68.PubMedCrossRef
Metadata
Title
Need for mechanically and ergonomically enhanced tremor-suppression orthoses for the upper limb: a systematic review
Authors
Nicolas Philip Fromme
Martin Camenzind
Robert Riener
René Michel Rossi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0543-7

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue