Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Research

A quantitative taxonomy of human hand grasps

Authors: Francesca Stival, Stefano Michieletto, Matteo Cognolato, Enrico Pagello, Henning Müller, Manfredo Atzori

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

A proper modeling of human grasping and of hand movements is fundamental for robotics, prosthetics, physiology and rehabilitation. The taxonomies of hand grasps that have been proposed in scientific literature so far are based on qualitative analyses of the movements and thus they are usually not quantitatively justified.

Methods

This paper presents to the best of our knowledge the first quantitative taxonomy of hand grasps based on biomedical data measurements. The taxonomy is based on electromyography and kinematic data recorded from 40 healthy subjects performing 20 unique hand grasps. For each subject, a set of hierarchical trees are computed for several signal features. Afterwards, the trees are combined, first into modality-specific (i.e. muscular and kinematic) taxonomies of hand grasps and then into a general quantitative taxonomy of hand movements. The modality-specific taxonomies provide similar results despite describing different parameters of hand movements, one being muscular and the other kinematic.

Results

The general taxonomy merges the kinematic and muscular description into a comprehensive hierarchical structure. The obtained results clarify what has been proposed in the literature so far and they partially confirm the qualitative parameters used to create previous taxonomies of hand grasps. According to the results, hand movements can be divided into five movement categories defined based on the overall grasp shape, finger positioning and muscular activation. Part of the results appears qualitatively in accordance with previous results describing kinematic hand grasping synergies.

Conclusions

The taxonomy of hand grasps proposed in this paper clarifies with quantitative measurements what has been proposed in the field on a qualitative basis, thus having a potential impact on several scientific fields.
Footnotes
3
The same mathematical expression is also known as Integrated EMG.
 
Literature
1.
go back to reference Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom. 1989; 5(3):269–79.CrossRef Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom. 1989; 5(3):269–79.CrossRef
4.
go back to reference Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, et al. Proceedings of the first workshop on peripheral machine interfaces: Going beyond traditional surface electromyography. Front Neurorobotics. 2014; 8:22.CrossRef Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, et al. Proceedings of the first workshop on peripheral machine interfaces: Going beyond traditional surface electromyography. Front Neurorobotics. 2014; 8:22.CrossRef
9.
12.
go back to reference Napier JR. The prehensile movements of the human hand. Bone Joint J. 1956; 38(4):902–13. Napier JR. The prehensile movements of the human hand. Bone Joint J. 1956; 38(4):902–13.
15.
go back to reference Skerik SK, Weiss MW, Flatt AE. Functional evaluation of congenital hand anomalies. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1971; 25(2):98–104. Skerik SK, Weiss MW, Flatt AE. Functional evaluation of congenital hand anomalies. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1971; 25(2):98–104.
17.
go back to reference Feix T, Romero J, Schmiedmayer H-B, Dollar AM, Kragic D. The grasp taxonomy of human grasp types. IEEE Trans Hum-Mach Syst. 2016; 46(1):66–77.CrossRef Feix T, Romero J, Schmiedmayer H-B, Dollar AM, Kragic D. The grasp taxonomy of human grasp types. IEEE Trans Hum-Mach Syst. 2016; 46(1):66–77.CrossRef
18.
go back to reference Wolf K, Naumann A, Rohs M, Müller J. Taxonomy of microinteractions: Defining microgestures based on ergonomic and scenario-dependent requirements. In: Proceedings of the 13th IFIP TC 13 International Conference on Human-computer Interaction - Volume Part I. INTERACT’11. Berlin: Springer-Verlag: 2011. p. 559–75. http://dl.acm.org/citation.cfm?id=2042053.2042111. Wolf K, Naumann A, Rohs M, Müller J. Taxonomy of microinteractions: Defining microgestures based on ergonomic and scenario-dependent requirements. In: Proceedings of the 13th IFIP TC 13 International Conference on Human-computer Interaction - Volume Part I. INTERACT’11. Berlin: Springer-Verlag: 2011. p. 559–75. http://​dl.​acm.​org/​citation.​cfm?​id=​2042053.​2042111.
19.
go back to reference Bullock IM, Ma RR, Dollar AM. A hand-centric classification of human and robot dexterous manipulation. IEEE Trans Haptics. 2013; 6(2):129–44.PubMedCrossRef Bullock IM, Ma RR, Dollar AM. A hand-centric classification of human and robot dexterous manipulation. IEEE Trans Haptics. 2013; 6(2):129–44.PubMedCrossRef
20.
go back to reference Cohen MF. An Introduction to Logic and Scientific Method. Estate House 144 Evesham Street, Redditch, Worcestershire B97 4HP: Read Books Ltd; 2013. Cohen MF. An Introduction to Logic and Scientific Method. Estate House 144 Evesham Street, Redditch, Worcestershire B97 4HP: Read Books Ltd; 2013.
21.
go back to reference Kessler GD, Hodges LF, Walker N. Evaluation of the cyberglove as a whole-hand input device. ACM Trans Comput-Hum Interact. 1995; 2(4):263–83.CrossRef Kessler GD, Hodges LF, Walker N. Evaluation of the cyberglove as a whole-hand input device. ACM Trans Comput-Hum Interact. 1995; 2(4):263–83.CrossRef
22.
go back to reference Lee S-W, Zhang X. Development and evaluation of an optimization-based model for power-grip posture prediction. J Biomech. 2005; 38(8):1591–7.PubMedCrossRef Lee S-W, Zhang X. Development and evaluation of an optimization-based model for power-grip posture prediction. J Biomech. 2005; 38(8):1591–7.PubMedCrossRef
23.
go back to reference Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros R, Ferrigno G. Finger kinematic modeling and real-time hand motion estimation. Ann Biomed Eng. 2007; 35(11):1989–2002.PubMedCrossRef Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros R, Ferrigno G. Finger kinematic modeling and real-time hand motion estimation. Ann Biomed Eng. 2007; 35(11):1989–2002.PubMedCrossRef
24.
go back to reference Carpinella I, Mazzoleni P, Rabuffetti M, Thorsen R, Ferrarin M. Experimental protocol for the kinematic analysis of the hand: definition and repeatability. Gait Posture. 2006; 23(4):445–54.PubMedCrossRef Carpinella I, Mazzoleni P, Rabuffetti M, Thorsen R, Ferrarin M. Experimental protocol for the kinematic analysis of the hand: definition and repeatability. Gait Posture. 2006; 23(4):445–54.PubMedCrossRef
25.
go back to reference Lee Y-H, Tsai C-Y. Taiwan sign language (tsl) recognition based on 3d data and neural networks. Expert Syst Appl. 2009; 36(2):1123–8.CrossRef Lee Y-H, Tsai C-Y. Taiwan sign language (tsl) recognition based on 3d data and neural networks. Expert Syst Appl. 2009; 36(2):1123–8.CrossRef
28.
go back to reference De Luca CJ. The Use of Surface Electromyography in Biomechanics. J Appl Biomech. 1997; 13:135–63.CrossRef De Luca CJ. The Use of Surface Electromyography in Biomechanics. J Appl Biomech. 1997; 13:135–63.CrossRef
29.
go back to reference Atzori M, Gijsberts A, Castellini C, Caputo B, Hager A-GM, Elsig S, Giatsidis G, Bassetto F, Müller H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data. 2014; 1:140053.PubMedPubMedCentralCrossRef Atzori M, Gijsberts A, Castellini C, Caputo B, Hager A-GM, Elsig S, Giatsidis G, Bassetto F, Müller H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data. 2014; 1:140053.PubMedPubMedCentralCrossRef
30.
go back to reference Atzori M, Gijsberts A, Castellini C, Caputo B, Hager A-GM, Simone E, Giatsidis G, Bassetto F, Müller H. Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands. J Rehabil Res Dev. 2016; 53(3):345–58.PubMedCrossRef Atzori M, Gijsberts A, Castellini C, Caputo B, Hager A-GM, Simone E, Giatsidis G, Bassetto F, Müller H. Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands. J Rehabil Res Dev. 2016; 53(3):345–58.PubMedCrossRef
31.
go back to reference Gregori V, Gijsberts A, Caputo B. Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know. 2017. arXiv preprint arXiv:1702.08283. Gregori V, Gijsberts A, Caputo B. Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know. 2017. arXiv preprint arXiv:1702.08283.
32.
go back to reference Kluge AG. A concern for evidence and a phylogenetic hypothesis of relationships among epicrates (boidae, serpentes). Syst Biol. 1989; 38(1):7–25.CrossRef Kluge AG. A concern for evidence and a phylogenetic hypothesis of relationships among epicrates (boidae, serpentes). Syst Biol. 1989; 38(1):7–25.CrossRef
34.
go back to reference Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML ’09. New York: ACM: 2009. p. 609–16. https://doi.org/10.1145/1553374.1553453. Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML ’09. New York: ACM: 2009. p. 609–16. https://​doi.​org/​10.​1145/​1553374.​1553453.
37.
go back to reference Atzori M, Gijsberts A, Heynen S, Hager A-GM, Deriaz O, Van Der Smagt P, Castellini C, Caputo B, Müller H. Building the Ninapro database: A resource for the biorobotics community. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE: 2012. p. 1258–65. https://doi.org/10.1109/BioRob.2012.6290287. Atzori M, Gijsberts A, Heynen S, Hager A-GM, Deriaz O, Van Der Smagt P, Castellini C, Caputo B, Müller H. Building the Ninapro database: A resource for the biorobotics community. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE: 2012. p. 1258–65. https://​doi.​org/​10.​1109/​BioRob.​2012.​6290287.
38.
go back to reference Tsuji H, Ichinobe H, Ito K, Nagamachi M. Discrimination of forearm motions from emg signals by error back propagation typed neural network using entropy. IEEE Trans Soc Instrum Control Eng. 1993; 29(10):1213–20. Tsuji H, Ichinobe H, Ito K, Nagamachi M. Discrimination of forearm motions from emg signals by error back propagation typed neural network using entropy. IEEE Trans Soc Instrum Control Eng. 1993; 29(10):1213–20.
39.
go back to reference Fukuda O, Tsuji T, Kaneko M, Otsuka A. A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans Robot Autom. 2003; 19(2):210–22.CrossRef Fukuda O, Tsuji T, Kaneko M, Otsuka A. A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans Robot Autom. 2003; 19(2):210–22.CrossRef
42.
go back to reference Edwards SJ, Buckland DJ, McCoy-Powlen J. Developmental & Functional Hand Grasps. 6900 Grove Road | Thorofare, NJ 08086: SLACK Incorporated; 2002, p. 135. Edwards SJ, Buckland DJ, McCoy-Powlen J. Developmental & Functional Hand Grasps. 6900 Grove Road | Thorofare, NJ 08086: SLACK Incorporated; 2002, p. 135.
44.
go back to reference Hudgins B, Parker P, Scott RN. A New Strategy for Multifunction Myoelectric Control. IEEE Trans Biomed Eng. 1993; 40(1):82–94.PubMedCrossRef Hudgins B, Parker P, Scott RN. A New Strategy for Multifunction Myoelectric Control. IEEE Trans Biomed Eng. 1993; 40(1):82–94.PubMedCrossRef
46.
go back to reference Mulgrew B, Grant P, Thompson J. Digital Signal Processing: Concepts and Applications. Crinan Street London N1 9XW: Macmillan Education UK; 1999.CrossRef Mulgrew B, Grant P, Thompson J. Digital Signal Processing: Concepts and Applications. Crinan Street London N1 9XW: Macmillan Education UK; 1999.CrossRef
49.
go back to reference Kuzborskij I, Gijsberts A, Caputo B. On the challenge of classifying 52 hand movements from surface electromyography. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE: 2012. p. 4931–7. https://doi.org/10.1109/EMBC.2012.6347099. Kuzborskij I, Gijsberts A, Caputo B. On the challenge of classifying 52 hand movements from surface electromyography. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE: 2012. p. 4931–7. https://​doi.​org/​10.​1109/​EMBC.​2012.​6347099.
53.
54.
go back to reference Krzanowski W. Principles of Multivariate Analysis. Oxford Statistical Science Series, vol. 23. New York: Oxford University Press, Inc.; 2000. Krzanowski W. Principles of Multivariate Analysis. Oxford Statistical Science Series, vol. 23. New York: Oxford University Press, Inc.; 2000.
57.
go back to reference Pawlik M, Augsten N. Efficient computation of the tree edit distance. ACM Trans Database Syst. 2015; 40(1):3–1340.CrossRef Pawlik M, Augsten N. Efficient computation of the tree edit distance. ACM Trans Database Syst. 2015; 40(1):3–1340.CrossRef
58.
go back to reference Stival F, Michieletto S, Pagello E, Müller H, Atzori M. Quantitative hierarchical representation and comparison of hand grasps from electromyography and kinematic data. In: Workshop Proceedings of the 15th International Conference on Autonomous Systems IAS-15, Workshop on Learning Applications for Intelligent Autonomous Robots (LAIAR-2018). Karlsruhe: Strand: 2018. ISBN: 978-3-00-059946-0. Stival F, Michieletto S, Pagello E, Müller H, Atzori M. Quantitative hierarchical representation and comparison of hand grasps from electromyography and kinematic data. In: Workshop Proceedings of the 15th International Conference on Autonomous Systems IAS-15, Workshop on Learning Applications for Intelligent Autonomous Robots (LAIAR-2018). Karlsruhe: Strand: 2018. ISBN: 978-3-00-059946-0.
62.
go back to reference Stival F, Moro M, Pagello E. A first approach to a taxonomy-based classification framework for hand grasps. In: Workshop Proceedings of the 15th International Conference on Autonomous Systems IAS-15, Workshop on Learning Applications for Intelligent Autonomous Robots (LAIAR-2018). Karlsruhe: Strand: 2018. ISBN: 978-3-00-059946-0. Stival F, Moro M, Pagello E. A first approach to a taxonomy-based classification framework for hand grasps. In: Workshop Proceedings of the 15th International Conference on Autonomous Systems IAS-15, Workshop on Learning Applications for Intelligent Autonomous Robots (LAIAR-2018). Karlsruhe: Strand: 2018. ISBN: 978-3-00-059946-0.
Metadata
Title
A quantitative taxonomy of human hand grasps
Authors
Francesca Stival
Stefano Michieletto
Matteo Cognolato
Enrico Pagello
Henning Müller
Manfredo Atzori
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0488-x

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue