Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Predictive value of the pendulum test for assessing knee extensor spasticity

Authors: Alyssa Whelan, Andrew Sexton, Melony Jones, Colleen O’Connell, Chris A. McGibbon

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

The pendulum test is commonly used to quantify knee extensor spasticity, but it is currently unknown to what extent common pendulum test metrics can detect spasticity in patients with neurological injury or disease, and if the presence of flexor spasticity influences the test outcomes.

Methods

A retrospective analysis was conducted on 131 knees, from 93 patients, across four different patient cohorts. Clinical data included Modified Ashworth Scale (MAS) scores for knee extensors and flexors, and years since diagnosis. BioTone™ measures included extensor strength, passive and active range of motion, and pendulum tests of most affected or both knees. Pendulum test metrics included the relaxation index (RI), 1st flexion amplitude (F1amp) and plateau angle (Plat), where RI=F1amp/Plat. Two-way ANOVA tests were used to determine if pendulum test metrics were influenced by the degree of knee flexor spasticity graded by the MAS, and ANCOVA was used to test for confounding effects of age, years since injury, strength and range of motion (ROM). In order to identify the best pendulum test metrics, Receiver Operator Characteristic analysis and logistic regression (LR) analysis were used to classify knees by spasticity status (none or any) and severity (low/moderate or high/severe).

Results

Pendulum test metrics for knee extensors were not influenced by degree of flexor spasticity, age, years since injury, strength or ROM of the limb. RI, F1amp and Plat were > 70% accurate in classifying knees by presence of clinical spasticity (from the MAS), but were less accurate (< 70%) for grading spasticity level. The best classification accuracy was obtained using F1amp and Plat independently in the model rather than using RI alone.

Conclusions

We conclude that the pendulum test has good predictive value for detecting the presence of extensor spasticity, independent of the existence of flexor spasticity. However, the ability to grade spasticity level as measured by MAS using the RI and/or F1amp may be limited. Further study is warranted to explore if the pendulum test is suitable for quantifying more severe spasticity.
Footnotes
1
note that R2 was originally used by [17] but most authors now use RI as introduced by [19].
 
Literature
1.
go back to reference Public Health Agency of Canada. Mapping connections: Understanding of neurological conditions in Canada. Ottawa ON: Public Health Agency of Canada; 2014. Public Health Agency of Canada. Mapping connections: Understanding of neurological conditions in Canada. Ottawa ON: Public Health Agency of Canada; 2014.
2.
go back to reference Logan LR. Rehabilitation techniques to maximize spasticity management. Top Stroke Rehabil. 2011;18(3):203–11.CrossRefPubMed Logan LR. Rehabilitation techniques to maximize spasticity management. Top Stroke Rehabil. 2011;18(3):203–11.CrossRefPubMed
3.
go back to reference Kostas JP, Ristanis SE, Soucacos PN. Botulinum a toxin for treatment of lower limb spasticity in cerebral palsy gait analysis in 49 patients. Acta Orthop Scand. 2003;74(6):749–55.CrossRefPubMed Kostas JP, Ristanis SE, Soucacos PN. Botulinum a toxin for treatment of lower limb spasticity in cerebral palsy gait analysis in 49 patients. Acta Orthop Scand. 2003;74(6):749–55.CrossRefPubMed
4.
go back to reference Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23(7):651–8.CrossRefPubMed Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23(7):651–8.CrossRefPubMed
5.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.CrossRefPubMed Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.CrossRefPubMed
6.
go back to reference Mackey AH, Walt SE, Lobb G, Stott NS. Intraobserver reliability of the modified Tardieu scale in the upper limb of children with hemiplegia. Dev Med Child Neurol. 2004;46(4):267–72.CrossRefPubMed Mackey AH, Walt SE, Lobb G, Stott NS. Intraobserver reliability of the modified Tardieu scale in the upper limb of children with hemiplegia. Dev Med Child Neurol. 2004;46(4):267–72.CrossRefPubMed
7.
go back to reference Ansari NN, Naghdi S, Younesian P, Shayeghan M. Inter- and intrarater reliability of the modified modified Ashworth scale in patients with knee extensor poststroke spasticity. Physiother Theory Pract. 2008;24(3):205–13.CrossRefPubMed Ansari NN, Naghdi S, Younesian P, Shayeghan M. Inter- and intrarater reliability of the modified modified Ashworth scale in patients with knee extensor poststroke spasticity. Physiother Theory Pract. 2008;24(3):205–13.CrossRefPubMed
8.
go back to reference Ansari NN, Naghdi S, Hasson S, Mousakhani A, Nouriyan A, Omidvar Z. Inter-rater reliability of the modified modified Ashworth scale as a clinical tool in measurements of post-stroke elbow flexor spasticity. NeuroRehabilitation. 2009;24(3):225–9.PubMed Ansari NN, Naghdi S, Hasson S, Mousakhani A, Nouriyan A, Omidvar Z. Inter-rater reliability of the modified modified Ashworth scale as a clinical tool in measurements of post-stroke elbow flexor spasticity. NeuroRehabilitation. 2009;24(3):225–9.PubMed
9.
go back to reference Pandyan AD, Price CI, Rodgers H, Barnes MP, Johnson GR. Biomechanical examination of a commonly used measure of spasticity. Clin Biomech Bristol Avon. 2001;16(10):859–65.CrossRef Pandyan AD, Price CI, Rodgers H, Barnes MP, Johnson GR. Biomechanical examination of a commonly used measure of spasticity. Clin Biomech Bristol Avon. 2001;16(10):859–65.CrossRef
10.
go back to reference Akpinar P, Atici A, Ozkan FU, Aktas I, Kulcu DG, Sarı A, et al. Reliability of the modified Ashworth scale and modified Tardieu scale in patients with spinal cord injuries. Spinal Cord. 2017;55:944–9.CrossRefPubMed Akpinar P, Atici A, Ozkan FU, Aktas I, Kulcu DG, Sarı A, et al. Reliability of the modified Ashworth scale and modified Tardieu scale in patients with spinal cord injuries. Spinal Cord. 2017;55:944–9.CrossRefPubMed
11.
go back to reference Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, et al. Stop using the Ashworth Scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2009;81(1):46–52. Journal ArticleCrossRefPubMed Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, et al. Stop using the Ashworth Scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2009;81(1):46–52. Journal ArticleCrossRefPubMed
12.
go back to reference McGibbon CA, Sexton A, Jones M, O’Connell C. Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system. J Neuroengineering Rehabil. 2013;10(1):61. -0003-10–61CrossRef McGibbon CA, Sexton A, Jones M, O’Connell C. Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system. J Neuroengineering Rehabil. 2013;10(1):61. -0003-10–61CrossRef
14.
go back to reference Calota A, Feldman AG, Levin MF. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(10):2329–37.CrossRef Calota A, Feldman AG, Levin MF. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(10):2329–37.CrossRef
15.
go back to reference Bar-On L, Aertbelien E, Wambacq H, Severijns D, Lambrecht K, Dan B, et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture. 2013;38(1):141–7.CrossRefPubMed Bar-On L, Aertbelien E, Wambacq H, Severijns D, Lambrecht K, Dan B, et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture. 2013;38(1):141–7.CrossRefPubMed
16.
18.
go back to reference Lin DC, Rymer WZ. A quantitative analysis of pendular motion of the lower leg in spastic human subjects. IEEE Trans Biomed Eng. 1991;38(9):906–18.CrossRefPubMed Lin DC, Rymer WZ. A quantitative analysis of pendular motion of the lower leg in spastic human subjects. IEEE Trans Biomed Eng. 1991;38(9):906–18.CrossRefPubMed
19.
go back to reference Stillman B, McMeeken J. A video-based version of the pendulum test: technique and normal response. Arch Phys Med Rehabil. 1995;76(2):166–76.CrossRefPubMed Stillman B, McMeeken J. A video-based version of the pendulum test: technique and normal response. Arch Phys Med Rehabil. 1995;76(2):166–76.CrossRefPubMed
20.
go back to reference Le Cavorzin P, Hernot X, Bartier O, Carrault G, Chagneau F, Gallien P, et al. Evaluation of pendulum testing of spasticity. Ann Readaptation med Phys rev Sci Soc Francaise reeducation Fonct Readaptation Med Phys 2002;45(9):510–516. Le Cavorzin P, Hernot X, Bartier O, Carrault G, Chagneau F, Gallien P, et al. Evaluation of pendulum testing of spasticity. Ann Readaptation med Phys rev Sci Soc Francaise reeducation Fonct Readaptation Med Phys 2002;45(9):510–516.
21.
go back to reference Jamshidi M, Smith AW. Clinical measurement of spasticity using the pendulum test: comparison of electrogoniometric and videotape analyses. Arch Phys Med Rehabil. 1996;77(11):1129–32.CrossRefPubMed Jamshidi M, Smith AW. Clinical measurement of spasticity using the pendulum test: comparison of electrogoniometric and videotape analyses. Arch Phys Med Rehabil. 1996;77(11):1129–32.CrossRefPubMed
22.
go back to reference Yeh C-H, Hung C-Y, Wang Y-H, Hsu W-T, Chang Y-C, Yeh J-R, et al. Novel application of a Wii remote to measure spasticity with the pendulum test: proof of concept. Gait Posture. 2016;43:70–75. Yeh C-H, Hung C-Y, Wang Y-H, Hsu W-T, Chang Y-C, Yeh J-R, et al. Novel application of a Wii remote to measure spasticity with the pendulum test: proof of concept. Gait Posture. 2016;43:70–75.
24.
go back to reference Bohannon RW. Variability and reliability of the pendulum test for spasticity using a Cybex II isokinetic dynamometer. Phys Ther. 1987;67(5):659–61.CrossRefPubMed Bohannon RW. Variability and reliability of the pendulum test for spasticity using a Cybex II isokinetic dynamometer. Phys Ther. 1987;67(5):659–61.CrossRefPubMed
25.
go back to reference Bohannon RW, Harrison S, Kinsella-Shaw J. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke. J Neuroengineering Rehabil. 2009;6:30. (Journal Article):30–0003–6–30CrossRef Bohannon RW, Harrison S, Kinsella-Shaw J. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke. J Neuroengineering Rehabil. 2009;6:30. (Journal Article):30–0003–6–30CrossRef
26.
go back to reference Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69(2):292–302. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69(2):292–302.
27.
go back to reference Fowler EG, Nwigwe AI, Ho TW. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev Med Child Neurol. 2000;42(3):182–9.CrossRefPubMed Fowler EG, Nwigwe AI, Ho TW. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev Med Child Neurol. 2000;42(3):182–9.CrossRefPubMed
28.
go back to reference Valle MS, Casabona A, Sgarlata R, Garozzo R, Vinci M, Cioni M. The pendulum test as a tool to evaluate passive knee stiffness and viscosity of patients with rheumatoid arthritis. BMC Musculoskelet Disord. 2006;7:89. Journal ArticleCrossRefPubMedPubMedCentral Valle MS, Casabona A, Sgarlata R, Garozzo R, Vinci M, Cioni M. The pendulum test as a tool to evaluate passive knee stiffness and viscosity of patients with rheumatoid arthritis. BMC Musculoskelet Disord. 2006;7:89. Journal ArticleCrossRefPubMedPubMedCentral
29.
go back to reference White H, Uhl TL, Augsburger S, Tylkowski C. Reliability of the three-dimensional pendulum test for able-bodied children and children diagnosed with cerebral palsy. Gait Posture. 2007;26(1):97–105.CrossRefPubMed White H, Uhl TL, Augsburger S, Tylkowski C. Reliability of the three-dimensional pendulum test for able-bodied children and children diagnosed with cerebral palsy. Gait Posture. 2007;26(1):97–105.CrossRefPubMed
30.
go back to reference Syczewska M, Lebiedowska MK, Pandyan AD. Quantifying repeatability of the Wartenberg pendulum test parameters in children with spasticity. J Neurosci Methods. 2009;178(2):340–4.CrossRefPubMed Syczewska M, Lebiedowska MK, Pandyan AD. Quantifying repeatability of the Wartenberg pendulum test parameters in children with spasticity. J Neurosci Methods. 2009;178(2):340–4.CrossRefPubMed
31.
go back to reference Biering-Sørensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708–22.CrossRefPubMed Biering-Sørensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708–22.CrossRefPubMed
32.
go back to reference Fleuren JF, Nederhand MJ, Hermens HJ. Influence of posture and muscle length on stretch reflex activity in poststroke patients with spasticity. Arch Phys Med Rehabil. 2006;87(7):981–8.CrossRefPubMed Fleuren JF, Nederhand MJ, Hermens HJ. Influence of posture and muscle length on stretch reflex activity in poststroke patients with spasticity. Arch Phys Med Rehabil. 2006;87(7):981–8.CrossRefPubMed
33.
go back to reference de Azevedo ERFBM, Maria RM, Alonso KC, Cliquet AJ. Posture influence on the pendulum test of spasticity in patients with spinal cord injury. Artif Organs. 2015;39(12):1033–7.CrossRefPubMed de Azevedo ERFBM, Maria RM, Alonso KC, Cliquet AJ. Posture influence on the pendulum test of spasticity in patients with spinal cord injury. Artif Organs. 2015;39(12):1033–7.CrossRefPubMed
34.
go back to reference Szopa A, Domagalska-Szopa M, Kidoń Z, Syczewska M. Quadriceps femoris spasticity in children with cerebral palsy: measurement with the pendulum test and relationship with gait abnormalities. J Neuroengineering Rehabil 2014;11:166 (September). Szopa A, Domagalska-Szopa M, Kidoń Z, Syczewska M. Quadriceps femoris spasticity in children with cerebral palsy: measurement with the pendulum test and relationship with gait abnormalities. J Neuroengineering Rehabil 2014;11:166 (September).
35.
go back to reference Krause P, Szecsi J, Straube A. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. Clin Rehabil. 2008;22(7):627–34.CrossRefPubMed Krause P, Szecsi J, Straube A. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. Clin Rehabil. 2008;22(7):627–34.CrossRefPubMed
36.
go back to reference Lotfian M, Mirbagheri MM, Kharazi MR, Dadashi F, Nourian R, Irani A, et al. Pendulum test measure correlates with gait parameters in children with cerebral palsy. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2016;2016:1708–11. Lotfian M, Mirbagheri MM, Kharazi MR, Dadashi F, Nourian R, Irani A, et al. Pendulum test measure correlates with gait parameters in children with cerebral palsy. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2016;2016:1708–11.
37.
go back to reference Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37(2):202–11.CrossRefPubMedPubMedCentral Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37(2):202–11.CrossRefPubMedPubMedCentral
38.
go back to reference Tancredo JR, Maria RM, Azevedo ER, Alonso KC, Varoto R, Cliquet Junior A. Clinical assessment of spasticity in individuals with spinal cord injury. Acta Ortop Bras. 2013;21(6):310–4.CrossRefPubMedPubMedCentral Tancredo JR, Maria RM, Azevedo ER, Alonso KC, Varoto R, Cliquet Junior A. Clinical assessment of spasticity in individuals with spinal cord injury. Acta Ortop Bras. 2013;21(6):310–4.CrossRefPubMedPubMedCentral
39.
go back to reference Nordmark E, Anderson G. Wartenberg pendulum test: objective quantification of muscle tone in children with spastic diplegia undergoing selective dorsal rhizotomy. Dev Med Child Neurol. 2002;44(1):26–33.CrossRefPubMed Nordmark E, Anderson G. Wartenberg pendulum test: objective quantification of muscle tone in children with spastic diplegia undergoing selective dorsal rhizotomy. Dev Med Child Neurol. 2002;44(1):26–33.CrossRefPubMed
40.
go back to reference Lin CC, Ju MS, Lin CW. The pendulum test for evaluating spasticity of the elbow joint. Arch Phys Med Rehabil. 2003;84(1):69–74.CrossRefPubMed Lin CC, Ju MS, Lin CW. The pendulum test for evaluating spasticity of the elbow joint. Arch Phys Med Rehabil. 2003;84(1):69–74.CrossRefPubMed
41.
go back to reference Huang H-W, Ju M-S, C-CK L. Flexor and extensor muscle tone evaluated using the quantitative pendulum test in stroke and parkinsonian patients. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;27:48–52. Huang H-W, Ju M-S, C-CK L. Flexor and extensor muscle tone evaluated using the quantitative pendulum test in stroke and parkinsonian patients. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;27:48–52.
42.
go back to reference Sterpi I, Caroli A, Meazza E, Maggioni G, Pistarini C, Colombo R. Lower limb spasticity assessment using an inertial sensor: a reliability study. Physiol Meas. 2013;34(11):1423–34.CrossRefPubMed Sterpi I, Caroli A, Meazza E, Maggioni G, Pistarini C, Colombo R. Lower limb spasticity assessment using an inertial sensor: a reliability study. Physiol Meas. 2013;34(11):1423–34.CrossRefPubMed
43.
go back to reference Joghtaei M, Arab AM, Hashemi-Nasl H, Joghataei MT, Tokhi MO. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test. J Spinal Cord Med. 2015;38(2):170–7.CrossRefPubMedPubMedCentral Joghtaei M, Arab AM, Hashemi-Nasl H, Joghataei MT, Tokhi MO. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test. J Spinal Cord Med. 2015;38(2):170–7.CrossRefPubMedPubMedCentral
44.
go back to reference Yeh CH, Young HWV, Wang CY, Wang YH, Lee PL, Kang JH, et al. Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling. IEEE Trans Neural Syst Rehabil Eng `2016;24(10):1081–1088. Yeh CH, Young HWV, Wang CY, Wang YH, Lee PL, Kang JH, et al. Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling. IEEE Trans Neural Syst Rehabil Eng `2016;24(10):1081–1088.
Metadata
Title
Predictive value of the pendulum test for assessing knee extensor spasticity
Authors
Alyssa Whelan
Andrew Sexton
Melony Jones
Colleen O’Connell
Chris A. McGibbon
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0411-x

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue