Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Practice-based skill acquisition of pushrim-activated power-assisted wheelchair propulsion versus regular handrim propulsion in novices

Authors: Rick de Klerk, Thijs Lutjeboer, Riemer J. K. Vegter, Lucas H. V. van der Woude

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Regular handrim wheelchair (RHW) propulsion is straining for the upper extremities and wheelchair users often experience overuse problems. A recent advancement in wheelchair technology that could assist users is the pushrim-activated power-assisted wheelchair (PAPAW). PAPAWs are challenging to control, yet it is unclear how people learn to use a PAPAW. The purpose of this study is to examine early skill acquisition through practice in PAPAWs and compare it with RHWs.

Methods

Twenty-four able-bodied novices were randomly allocated to either the RHW group or the PAPAW group. The experiment consisted of five sessions with three blocks of 4 min steady-state practice at 1.11 m/s and 0.21 W/kg. Finally, a transfer to the other mode was made. Data were collected with a drag-test, breath-by-breath spirometry, and a motion capture system. The last minute of each four-minute block was used for analysis. A mixed analysis of variance (ANOVA) was used to test for group, time, and interaction effects.

Results

Both groups improved their (assisted) mechanical efficiency, reduced their stroke rate, right-left and forward-backward deviation on the treadmill, and had a lower rate of perceived exertion (RPE) over time. (Assisted) mechanical efficiency was higher for the PAPAW group than for the RHW group and RPE was lower. However, left-right and forward-backward deviation was also found to be higher in the PAPAW group.

Conclusions

At the group level the energetic cost of RHW and PAPAW propulsion can be lowered through low-intensity practice in novice users. The PAPAW is more ‘efficient’ than the RHW given the reduced energy requirement of the user from the motor assist, but more difficult to control. Future studies on PAPAWs should focus on the control needs of the user and their interaction with the power-assist technology.
Literature
3.
go back to reference Rauch A, Hinrichs T, Oberhauser C, Cieza A, SwiSCI Study Group. Do people with spinal cord injury meet the WHO recommendations on physical activity. Int J Public Health. 2016;61(1):17–27. Rauch A, Hinrichs T, Oberhauser C, Cieza A, SwiSCI Study Group. Do people with spinal cord injury meet the WHO recommendations on physical activity. Int J Public Health. 2016;61(1):17–27.
4.
go back to reference van Drongelen S, De Groot S, Veeger H, Angenot E, Dallmeijer A, Post M, et al. Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury. Spinal Cord. 2006;44(3):152–9.CrossRefPubMed van Drongelen S, De Groot S, Veeger H, Angenot E, Dallmeijer A, Post M, et al. Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury. Spinal Cord. 2006;44(3):152–9.CrossRefPubMed
5.
go back to reference Dalyan M, Cardenas DD, Gerard B. Upper extremity pain after spinal cord injury. Spinal Cord. 1999;37(3):191–5.CrossRefPubMed Dalyan M, Cardenas DD, Gerard B. Upper extremity pain after spinal cord injury. Spinal Cord. 1999;37(3):191–5.CrossRefPubMed
6.
go back to reference Cooper RA, Boninger ML, Spaeth DM, Ding D, Guo S, Koontz AM et al. Engineering better wheelchairs to enhance community participation. IEEE Trans Neural Syst Rehabil Eng. 2006;14(4):438–55. Cooper RA, Boninger ML, Spaeth DM, Ding D, Guo S, Koontz AM et al. Engineering better wheelchairs to enhance community participation. IEEE Trans Neural Syst Rehabil Eng. 2006;14(4):438–55.
9.
go back to reference van der Woude LH, Veeger HE, Dallmeijer AJ, Janssen TW, Rozendaal LA. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 2001;23(10):713–33. S1350453301000832.CrossRefPubMed van der Woude LH, Veeger HE, Dallmeijer AJ, Janssen TW, Rozendaal LA. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 2001;23(10):713–33. S135045330100083​2.CrossRefPubMed
11.
go back to reference Levy CE, Chow JW, Tillman MD, Hanson C, Donohue T, Mann WC. Variable-ratio pushrim-activated power-assist wheelchair eases wheeling over a variety of terrains for elders. Arch Phys Med Rehabil. 2004;85(1):104–12.CrossRefPubMed Levy CE, Chow JW, Tillman MD, Hanson C, Donohue T, Mann WC. Variable-ratio pushrim-activated power-assist wheelchair eases wheeling over a variety of terrains for elders. Arch Phys Med Rehabil. 2004;85(1):104–12.CrossRefPubMed
12.
go back to reference Algood SD, Cooper RA, Fitzgerald SG, Cooper R, Boninger ML. Effect of a pushrim-activated power-assist wheelchair on the functional capabilities of persons with tetraplegia. Arch Phys Med Rehabil. 2005;86(3):380–6. S0003999304011578.CrossRefPubMed Algood SD, Cooper RA, Fitzgerald SG, Cooper R, Boninger ML. Effect of a pushrim-activated power-assist wheelchair on the functional capabilities of persons with tetraplegia. Arch Phys Med Rehabil. 2005;86(3):380–6. S000399930401157​8.CrossRefPubMed
13.
go back to reference Algood SD, Cooper RA, Fitzgerald SG, Cooper R, Boninger ML. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia. Arch Phys Med Rehabil. 2004;85(11):1865–71. S0003999304006550.CrossRefPubMed Algood SD, Cooper RA, Fitzgerald SG, Cooper R, Boninger ML. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia. Arch Phys Med Rehabil. 2004;85(11):1865–71. S000399930400655​0.CrossRefPubMed
14.
go back to reference Lighthall-Haubert L, Requejo PS, Mulroy SJ, Newsam CJ, Bontrager E, Gronley JK, et al. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia. Arch Phys Med Rehabil. 2009;90(11):1904–15. https://doi.org/10.1016/j.apmr.2009.05.023.CrossRefPubMed Lighthall-Haubert L, Requejo PS, Mulroy SJ, Newsam CJ, Bontrager E, Gronley JK, et al. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia. Arch Phys Med Rehabil. 2009;90(11):1904–15. https://​doi.​org/​10.​1016/​j.​apmr.​2009.​05.​023.CrossRefPubMed
16.
go back to reference Arva J, Fitzgerald SG, Cooper RA, Boninger ML. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair. Med Eng Phys. 2001;23(10):699–705. S1350453301000546.CrossRefPubMed Arva J, Fitzgerald SG, Cooper RA, Boninger ML. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair. Med Eng Phys. 2001;23(10):699–705. S135045330100054​6.CrossRefPubMed
17.
go back to reference Kloosterman MG, Eising H, Schaake L, Buurke JH, Rietman JS. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion. Clin Biomech. 2012;27(5):428–35.CrossRef Kloosterman MG, Eising H, Schaake L, Buurke JH, Rietman JS. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion. Clin Biomech. 2012;27(5):428–35.CrossRef
22.
go back to reference Elliott D, Hansen S, Mendoza J, Tremblay L. Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. J Mot Behav. 2004;36(3):339–51.CrossRefPubMed Elliott D, Hansen S, Mendoza J, Tremblay L. Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. J Mot Behav. 2004;36(3):339–51.CrossRefPubMed
23.
24.
go back to reference Lay B, Sparrow W, Hughes K, O’Dwyer N. Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Hum Mov Sci. 2002;21(5):807–30. Lay B, Sparrow W, Hughes K, O’Dwyer N. Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Hum Mov Sci. 2002;21(5):807–30.
25.
go back to reference de Groot S, Veeger HEJ, Hollander AP, van der Woude LHV. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. Med Eng Phys. 2005;27(1):41–49. de Groot S, Veeger HEJ, Hollander AP, van der Woude LHV. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. Med Eng Phys. 2005;27(1):41–49.
26.
go back to reference Van der Woude L, van Krmen E, Ariens G, Rozendal R, Veeger H. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion. J Med Eng Technol. 1995;19(4):123–31.CrossRefPubMed Van der Woude L, van Krmen E, Ariens G, Rozendal R, Veeger H. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion. J Med Eng Technol. 1995;19(4):123–31.CrossRefPubMed
27.
go back to reference Vegter RJ, Lamoth CJ, de Groot S, Veeger DH, van der Woude, Lucas HV. Inter-individual differences in the initial 80 minutes of motor learning of handrim wheelchair propulsion. PLoS One. 2014;9(2):e89729. Vegter RJ, Lamoth CJ, de Groot S, Veeger DH, van der Woude, Lucas HV. Inter-individual differences in the initial 80 minutes of motor learning of handrim wheelchair propulsion. PLoS One. 2014;9(2):e89729.
28.
go back to reference Bays PM, Wolpert DM. Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol Lond. 2007;578(2):387–96.CrossRefPubMed Bays PM, Wolpert DM. Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol Lond. 2007;578(2):387–96.CrossRefPubMed
29.
go back to reference van Ingen Schenau GJ. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med Sci Sports Exerc. 1980;12(4):257–61.CrossRefPubMed van Ingen Schenau GJ. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med Sci Sports Exerc. 1980;12(4):257–61.CrossRefPubMed
30.
go back to reference Baldwin TT, Ford JK. Transfer of training: a review and directions for future research. Pers Psychol. 1988;41(1):63–105.CrossRef Baldwin TT, Ford JK. Transfer of training: a review and directions for future research. Pers Psychol. 1988;41(1):63–105.CrossRef
31.
go back to reference Veeger D, Van der Woude L, Rozendal RH. The effect of rear wheel camber in manual wheelchair propulsion. J Rehabil Res Dev. 1989;26(2):37–46.PubMed Veeger D, Van der Woude L, Rozendal RH. The effect of rear wheel camber in manual wheelchair propulsion. J Rehabil Res Dev. 1989;26(2):37–46.PubMed
32.
go back to reference Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443–4.CrossRefPubMed Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443–4.CrossRefPubMed
33.
34.
go back to reference Pavlidou E, Kloosterman MG, Buurke JH, Rietman JS, Janssen TW. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs. Med Eng Phys. 2015;37(11):1105–10.CrossRefPubMed Pavlidou E, Kloosterman MG, Buurke JH, Rietman JS, Janssen TW. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs. Med Eng Phys. 2015;37(11):1105–10.CrossRefPubMed
35.
go back to reference Leving MT, Vegter RJ, Hartog J, Lamoth CJ, de Groot S, van der Woude, Lucas HV. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion. PLoS One. 2015;10(5):e0127311. Leving MT, Vegter RJ, Hartog J, Lamoth CJ, de Groot S, van der Woude, Lucas HV. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion. PLoS One. 2015;10(5):e0127311.
37.
go back to reference Best KL, Kirby RL, Smith C, MacLeod DA. Comparison between performance with a pushrim-activated power-assisted wheelchair and a manual wheelchair on the wheelchair skills test. Disabil Rehabil. 2006;28(4):213–20. H16311V335658549.CrossRefPubMed Best KL, Kirby RL, Smith C, MacLeod DA. Comparison between performance with a pushrim-activated power-assisted wheelchair and a manual wheelchair on the wheelchair skills test. Disabil Rehabil. 2006;28(4):213–20. H16311V335658549​.CrossRefPubMed
38.
go back to reference Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer, Jan W et al. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. J Neuroeng Rehabil. 2015;12(1):1. Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer, Jan W et al. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. J Neuroeng Rehabil. 2015;12(1):1.
39.
go back to reference Sparrow W, Irizarry-Lopez V. Mechanical efficiency and metabolic cost as measures of learning a novel gross motor task. J Mot Behav. 1987;19(2):240–64.CrossRefPubMed Sparrow W, Irizarry-Lopez V. Mechanical efficiency and metabolic cost as measures of learning a novel gross motor task. J Mot Behav. 1987;19(2):240–64.CrossRefPubMed
40.
go back to reference Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675–94. Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675–94.
Metadata
Title
Practice-based skill acquisition of pushrim-activated power-assisted wheelchair propulsion versus regular handrim propulsion in novices
Authors
Rick de Klerk
Thijs Lutjeboer
Riemer J. K. Vegter
Lucas H. V. van der Woude
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0397-4

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue