Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events

Authors: Kiley L. Armstrong, Lisa M. Lombardo, Kevin M. Foglyano, Musa L. Audu, Ronald J. Triolo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

The leading cause of injury for manual wheelchair users are tips and falls caused by unexpected destabilizing events encountered during everyday activities. The purpose of this study was to determine the feasibility of automatically restoring seated stability to manual wheelchair users with spinal cord injury (SCI) via a threshold-based system to activate the hip and trunk muscles with electrical stimulation during potentially destabilizing events.

Methods

We detected and classified potentially destabilizing sudden stops and turns with a wheelchair-mounted wireless inertial measurement unit (IMU), and then applied neural stimulation to activate the appropriate muscles to resist trunk movement and restore seated stability. After modeling and preliminary testing to determine the appropriate inertial signatures to discriminate between events and reliably trigger stimulation, the system was implemented and evaluated in real-time on manual wheelchair users with SCI. Three participants completed simulated collision events and four participants completed simulated rapid turns. Data were analyzed as a series of individual case studies with subjects acting as their own controls with and without the system active.

Results

The controller achieved 93% accuracy in detecting collisions and right turns, and 100% accuracy in left turn detection. Two of the three subjects who participated in collision testing with stimulation experienced significantly decreased maximum anterior-posterior trunk angles (p < 0.05). Similar results were obtained with implanted and surface stimulation systems.

Conclusions

This study demonstrates the feasibility of a neural stimulation control system based on simple inertial measurements to improve trunk stability and overall safety of people with spinal cord injuries during manual wheelchair propulsion. Further studies are required to determine clinical utility in real world situations and generalizability to the broader SCI or other population of manual or powered wheelchair users.

Trial registration

ClinicalTrials.​gov Identifier NCT01474148. Registered 11/08/2011 retrospectively registered. 
Literature
3.
go back to reference Anderson KD. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J Neurotrauma. 2004;21:1371–83.CrossRefPubMed Anderson KD. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J Neurotrauma. 2004;21:1371–83.CrossRefPubMed
4.
go back to reference Milosevic M, Masani K, Kuipers MJ, Rahouni H, Verrier MC, McConville KM, Popovic MR. Trunk Control Impairment is Responsible for Postural Instability during Quiet Sitting in Individuals with Cervical Spinal Cord Injury. Clin Biomech (Bristol, Avon). 2015;30(5):507–12.CrossRef Milosevic M, Masani K, Kuipers MJ, Rahouni H, Verrier MC, McConville KM, Popovic MR. Trunk Control Impairment is Responsible for Postural Instability during Quiet Sitting in Individuals with Cervical Spinal Cord Injury. Clin Biomech (Bristol, Avon). 2015;30(5):507–12.CrossRef
6.
go back to reference Gavin-Dreschnack D, Nelson A, Fitzgerald S, Harrow J, Sanchez-Anguiano A, Ahmed S, Powell-Cope G. Wheelchair-related Falls: Current Evidence and Directions for Improved Quality Care. J Nurs Care Qual. 2005;20:119–27.CrossRefPubMed Gavin-Dreschnack D, Nelson A, Fitzgerald S, Harrow J, Sanchez-Anguiano A, Ahmed S, Powell-Cope G. Wheelchair-related Falls: Current Evidence and Directions for Improved Quality Care. J Nurs Care Qual. 2005;20:119–27.CrossRefPubMed
7.
go back to reference Gaal RP, Rebholtz N, Hotchkiss RD, Pfaelzer PF. Wheelchair rider injuries: causes and consequences for wheelchair design and selection. J Rehabil Res Dev. 1997;34:2. Gaal RP, Rebholtz N, Hotchkiss RD, Pfaelzer PF. Wheelchair rider injuries: causes and consequences for wheelchair design and selection. J Rehabil Res Dev. 1997;34:2.
9.
go back to reference Kirby RL, Sampson MT, Thoren FAV, Macleod DA. Wheelchair Stability Effect of Body Position. J Rehabil Res Dev. 1995;32(4):367–72.PubMed Kirby RL, Sampson MT, Thoren FAV, Macleod DA. Wheelchair Stability Effect of Body Position. J Rehabil Res Dev. 1995;32(4):367–72.PubMed
10.
go back to reference Kirby RL, Ackroyd-Stolarz SA. Wheelchair Safety-Adverse Reports to the United States Food and Drug Administration. Am J Phys Med Rehabil. 1995;74:308–12.CrossRefPubMed Kirby RL, Ackroyd-Stolarz SA. Wheelchair Safety-Adverse Reports to the United States Food and Drug Administration. Am J Phys Med Rehabil. 1995;74:308–12.CrossRefPubMed
11.
go back to reference Chaves ES, Cooper RA, Collins DM, Karmarkar A, Cooper R. Review of the Use of Physical Restraints and Lap Belts with Wheelchair Users. Assist Technol. 2007;19:94–107.CrossRefPubMed Chaves ES, Cooper RA, Collins DM, Karmarkar A, Cooper R. Review of the Use of Physical Restraints and Lap Belts with Wheelchair Users. Assist Technol. 2007;19:94–107.CrossRefPubMed
12.
go back to reference Kamper D, Barin K, Parnianpour M, Weed H. Preliminary Investigation of Lateral Postural Stability of Spinal Cord-Injured Individuals Subjected to Dynamic Perturbations. Spinal Cord. 1999;37:40–6.CrossRefPubMed Kamper D, Barin K, Parnianpour M, Weed H. Preliminary Investigation of Lateral Postural Stability of Spinal Cord-Injured Individuals Subjected to Dynamic Perturbations. Spinal Cord. 1999;37:40–6.CrossRefPubMed
13.
go back to reference Minkel JL. Seating and Mobility Considerations for People with Spinal Cord Injury. Phys Ther. 2000;80:701–9.PubMed Minkel JL. Seating and Mobility Considerations for People with Spinal Cord Injury. Phys Ther. 2000;80:701–9.PubMed
14.
go back to reference Triolo RJ, Nogan-Bailey S, Miller ME, Lombardo LM, Audu ML. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture, and Reach after Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1766–75.CrossRefPubMedPubMedCentral Triolo RJ, Nogan-Bailey S, Miller ME, Lombardo LM, Audu ML. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture, and Reach after Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1766–75.CrossRefPubMedPubMedCentral
15.
go back to reference Vette AH, Wu N, Masani K, Popovic MR. Low-Intensity Functional Electrical Stimulation Can Increase Multidirectional Trunk Stiffness in Able-Bodied Individuals during Sitting. Med Eng Phys. 2015;37(8):777–82.CrossRefPubMed Vette AH, Wu N, Masani K, Popovic MR. Low-Intensity Functional Electrical Stimulation Can Increase Multidirectional Trunk Stiffness in Able-Bodied Individuals during Sitting. Med Eng Phys. 2015;37(8):777–82.CrossRefPubMed
16.
go back to reference Milosevic M, Masani K, Wu N, McConville KM, Popovic MR. Trunk Muscle Co-activation using Functional Electrical Stimulation Modifies Center of Pressure Fluctuations during Quiet Sitting by Increasing Trunk Stiffness. J Neuroeng Rehabil. 2015;12:99.CrossRefPubMedPubMedCentral Milosevic M, Masani K, Wu N, McConville KM, Popovic MR. Trunk Muscle Co-activation using Functional Electrical Stimulation Modifies Center of Pressure Fluctuations during Quiet Sitting by Increasing Trunk Stiffness. J Neuroeng Rehabil. 2015;12:99.CrossRefPubMedPubMedCentral
19.
go back to reference Masani K, Sin VW, Vette AH, Thrasher TA, Kawashima N, Morris A, Preuss R, Popovic MR. Postural Reactions of the Trunk Muscles to Multi-directional Perturbations in Sitting. Clin Biomech. 2009;24(2):176–82.CrossRef Masani K, Sin VW, Vette AH, Thrasher TA, Kawashima N, Morris A, Preuss R, Popovic MR. Postural Reactions of the Trunk Muscles to Multi-directional Perturbations in Sitting. Clin Biomech. 2009;24(2):176–82.CrossRef
20.
go back to reference Triolo RJ, Boggs L, Miller ME, Nemunaitis G, Nagy J, Nogan-Bailey S. Implanted Electrical Stimulation of the Trunk for Seated Postural Stability and Function after Cervical Spinal Cord Injury: A Single Case Study. Arch Phys Med Rehabil. 2009;90:340–7.CrossRefPubMedPubMedCentral Triolo RJ, Boggs L, Miller ME, Nemunaitis G, Nagy J, Nogan-Bailey S. Implanted Electrical Stimulation of the Trunk for Seated Postural Stability and Function after Cervical Spinal Cord Injury: A Single Case Study. Arch Phys Med Rehabil. 2009;90:340–7.CrossRefPubMedPubMedCentral
21.
go back to reference Murphy JO, Audu ML, Lombardo LM, Foglyano KM, Triolo RJ. Feasibility of Closed-loop Controller for Righting Seated Posture after Spinal Cord Injury. J Rehabil Res Dev. 2014;51:747–60.CrossRefPubMed Murphy JO, Audu ML, Lombardo LM, Foglyano KM, Triolo RJ. Feasibility of Closed-loop Controller for Righting Seated Posture after Spinal Cord Injury. J Rehabil Res Dev. 2014;51:747–60.CrossRefPubMed
22.
go back to reference Triolo RJ, Nogan-Bailey S, Lombard LM, Miller ME, Foglyano K, Audu ML. Effects of Intramuscular Trunk Stimulation on Manual Wheelchair Propulsion Mechanics in 6 Subjects with Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1997–2005.CrossRefPubMedPubMedCentral Triolo RJ, Nogan-Bailey S, Lombard LM, Miller ME, Foglyano K, Audu ML. Effects of Intramuscular Trunk Stimulation on Manual Wheelchair Propulsion Mechanics in 6 Subjects with Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1997–2005.CrossRefPubMedPubMedCentral
24.
go back to reference Garcí-Massó X, Serra P, González LM, Garcia-Casado J. Identifying Physical Activity Type in Manual Wheelchair Users with Spinal Cord Injury by Means of Accelerometers. Spinal Cord. 2015;53:772–7.CrossRef Garcí-Massó X, Serra P, González LM, Garcia-Casado J. Identifying Physical Activity Type in Manual Wheelchair Users with Spinal Cord Injury by Means of Accelerometers. Spinal Cord. 2015;53:772–7.CrossRef
25.
go back to reference Postma K, van den Ber-Gemons HJG, Bussmann JBJ, Sluis TAR, Bergan MP, Stam HJ. Validity of the Detection of Wheelchair Propulsion as Measured with an Activity Monitor in Patients with Spinal Cord Injury. J Spinal Cord Med. 1995;18:9–13.CrossRef Postma K, van den Ber-Gemons HJG, Bussmann JBJ, Sluis TAR, Bergan MP, Stam HJ. Validity of the Detection of Wheelchair Propulsion as Measured with an Activity Monitor in Patients with Spinal Cord Injury. J Spinal Cord Med. 1995;18:9–13.CrossRef
26.
go back to reference Hiremath SV, Ding D, Farrindon J, Vyas N, Cooper RA. Physical Activity Classification Utilizing SenseWear Activity Monitor in Manual Wheelchair Users with Spinal Cord Injury. Spinal Cord. 2013;51:705–9.CrossRefPubMed Hiremath SV, Ding D, Farrindon J, Vyas N, Cooper RA. Physical Activity Classification Utilizing SenseWear Activity Monitor in Manual Wheelchair Users with Spinal Cord Injury. Spinal Cord. 2013;51:705–9.CrossRefPubMed
28.
go back to reference Bruno C Development of a Mathematical Model to Investigate the Static and Dynamic Stability of a Wheelchair System. MS Thesis, Worcester Polytechnic Institute. 1997. Bruno C Development of a Mathematical Model to Investigate the Static and Dynamic Stability of a Wheelchair System. MS Thesis, Worcester Polytechnic Institute. 1997.
29.
go back to reference Majaess GG, Kirby RL, Ackroyd-Stolarz SA, Charlebois PB. Influence of Seat Position on the Static and Dynamic Forward Rear Stability of Occupied Wheelchairs. Arch Phys Med Rehabil. 1993;74:977–82.PubMed Majaess GG, Kirby RL, Ackroyd-Stolarz SA, Charlebois PB. Influence of Seat Position on the Static and Dynamic Forward Rear Stability of Occupied Wheelchairs. Arch Phys Med Rehabil. 1993;74:977–82.PubMed
30.
go back to reference Li WW, Shahram P. A Study of Active Shifting of Human Driver for Improving Wheelchair Tipping Stability. CiteSeerX, 2008. oai(CiteSeerX.psu):10.1.1.50.5536. Li WW, Shahram P. A Study of Active Shifting of Human Driver for Improving Wheelchair Tipping Stability. CiteSeerX, 2008. oai(CiteSeerX.psu):10.1.1.50.5536.
31.
go back to reference Cooper RA, MacLeish M. Racing Wheelchair Roll Stability While Turning: A Simple Model. J Rehabil Res Dev. 1992;29:23–30.CrossRefPubMed Cooper RA, MacLeish M. Racing Wheelchair Roll Stability While Turning: A Simple Model. J Rehabil Res Dev. 1992;29:23–30.CrossRefPubMed
32.
go back to reference Vette AH, Masani K, Popovic MR. Time Delay from Muscle Activation to Torque Generation during Quiet Stance: Implications for Closed-Loop Control via FES. Biomed Tech. 2008;53(Suppl 1):423–5. Vette AH, Masani K, Popovic MR. Time Delay from Muscle Activation to Torque Generation during Quiet Stance: Implications for Closed-Loop Control via FES. Biomed Tech. 2008;53(Suppl 1):423–5.
33.
go back to reference Nataraj R, Audu ML, Triolo RJ. Simulating the Restoration of Standing Balance at Leaning Postures with functional Neuromuscular Stimulation following Spinal Cord Injury. Med Biol Eng Comput. 2016:163–76. Nataraj R, Audu ML, Triolo RJ. Simulating the Restoration of Standing Balance at Leaning Postures with functional Neuromuscular Stimulation following Spinal Cord Injury. Med Biol Eng Comput. 2016:163–76.
34.
go back to reference Audu ML, Triolo RJ. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control after Spinal Cord Injury. J Appl Biomech. 2015;31:221–8.CrossRefPubMedPubMedCentral Audu ML, Triolo RJ. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control after Spinal Cord Injury. J Appl Biomech. 2015;31:221–8.CrossRefPubMedPubMedCentral
35.
go back to reference Triolo RJ, Bailey SN, Lombardo LM, Miller ME, Foglyano K, Audu ML. Effects of Intramuscular Trunk Stimulation on Manual Wheelchair Propulsion Mechanics in 6 Subjects with Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1997–2005.CrossRefPubMedPubMedCentral Triolo RJ, Bailey SN, Lombardo LM, Miller ME, Foglyano K, Audu ML. Effects of Intramuscular Trunk Stimulation on Manual Wheelchair Propulsion Mechanics in 6 Subjects with Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1997–2005.CrossRefPubMedPubMedCentral
36.
go back to reference Triolo RJ, Bailey SN, Miller ME, Lombardo LM, Audu ML. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture, and Reach after Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1766–75.CrossRefPubMedPubMedCentral Triolo RJ, Bailey SN, Miller ME, Lombardo LM, Audu ML. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture, and Reach after Spinal Cord Injury. Arch Phys Med Rehabil. 2013;94:1766–75.CrossRefPubMedPubMedCentral
37.
go back to reference Hunt AJ, Odle BM, Lombardo LM, Audu ML, Triolo RJ. Reactive Stepping with Functional Neuromuscular Stimulation in Response to Forward-directed Perturbations. J Neuroeng Rehabil. 2017;14:54.CrossRefPubMedPubMedCentral Hunt AJ, Odle BM, Lombardo LM, Audu ML, Triolo RJ. Reactive Stepping with Functional Neuromuscular Stimulation in Response to Forward-directed Perturbations. J Neuroeng Rehabil. 2017;14:54.CrossRefPubMedPubMedCentral
38.
go back to reference Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis JA Jr, Abbas JJ, LA DP, Forrest GP, Gater DR Jr, Yang LJ. Longitudinal Performance of a Surgically Implanted Neuroprosthesis for Lower-Extremity Exercise, Standing, and Transfers after Spinal Cord Injury. Arch Phys Med Rehabil. 2012;93:896–904.CrossRefPubMedPubMedCentral Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis JA Jr, Abbas JJ, LA DP, Forrest GP, Gater DR Jr, Yang LJ. Longitudinal Performance of a Surgically Implanted Neuroprosthesis for Lower-Extremity Exercise, Standing, and Transfers after Spinal Cord Injury. Arch Phys Med Rehabil. 2012;93:896–904.CrossRefPubMedPubMedCentral
39.
go back to reference Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Murray LR, Tyler DJ, Triolo RJ. Standing after Spinal Cord Injury with Four-contact Nerve-Cuff Electrodes for Quadriceps Stimulation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:473–8.CrossRefPubMedPubMedCentral Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Murray LR, Tyler DJ, Triolo RJ. Standing after Spinal Cord Injury with Four-contact Nerve-Cuff Electrodes for Quadriceps Stimulation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:473–8.CrossRefPubMedPubMedCentral
40.
go back to reference Smith B, Tang Z, Johnson M, Pourmehdi S, Gazdik M, Buckett J, Peckham P. An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle. IEEE Trans Rehab Eng. 1998;45:463–75.CrossRef Smith B, Tang Z, Johnson M, Pourmehdi S, Gazdik M, Buckett J, Peckham P. An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle. IEEE Trans Rehab Eng. 1998;45:463–75.CrossRef
41.
go back to reference Davis JA Jr, Triolo RJ, Uhlir JP, Bieri C, Rohde L, Lissy D. Preliminary Performance of a Surgically Implanted Neuroprosthesis for Standing and Transfers – Where do we stand? J Rehabil Res Dev. 2001;38:609–17.PubMed Davis JA Jr, Triolo RJ, Uhlir JP, Bieri C, Rohde L, Lissy D. Preliminary Performance of a Surgically Implanted Neuroprosthesis for Standing and Transfers – Where do we stand? J Rehabil Res Dev. 2001;38:609–17.PubMed
42.
go back to reference Davis JA Jr, Triolo RJ, Uhlir JP, Bhadra N, Lissy DA, Nandurkar S, Marsolais EB. Surgical Technique for Installing an 8-channel Neuroprosthesis for Standing. Clin Orthop Relat Res. 2001;4:237–52.CrossRef Davis JA Jr, Triolo RJ, Uhlir JP, Bhadra N, Lissy DA, Nandurkar S, Marsolais EB. Surgical Technique for Installing an 8-channel Neuroprosthesis for Standing. Clin Orthop Relat Res. 2001;4:237–52.CrossRef
43.
go back to reference Triolo RJ, Bieri C, Uhlir J, Kobetic R, Scheiner A, Marsolais EB. Implanted FNS Systems for Assisted Standing and Transfers for Individuals with Cervical Spinal Cord Injuries: Clinical Case Reports. Arch Phys Med Rehabil. 1996;77:1119–28.CrossRefPubMed Triolo RJ, Bieri C, Uhlir J, Kobetic R, Scheiner A, Marsolais EB. Implanted FNS Systems for Assisted Standing and Transfers for Individuals with Cervical Spinal Cord Injuries: Clinical Case Reports. Arch Phys Med Rehabil. 1996;77:1119–28.CrossRefPubMed
44.
go back to reference Memberg WD, Peckham PH, Thrope GB, Keith MW, Kicher TP. An analysis of the Reliability of Percutaneous Intramuscular Electrodes in Upper Extremity FNS Applications. IEEE Trans on Rehabil Eng. 1993;1(2):123–32.CrossRef Memberg WD, Peckham PH, Thrope GB, Keith MW, Kicher TP. An analysis of the Reliability of Percutaneous Intramuscular Electrodes in Upper Extremity FNS Applications. IEEE Trans on Rehabil Eng. 1993;1(2):123–32.CrossRef
45.
go back to reference Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, Triolo RJ. Long-term Stability of Stimulating Spiral Nerve Cuff Electrodes on Human Peripheral Nerves. J Neuroeng Rehabil. 2017;14(1):70.CrossRefPubMedPubMedCentral Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, Triolo RJ. Long-term Stability of Stimulating Spiral Nerve Cuff Electrodes on Human Peripheral Nerves. J Neuroeng Rehabil. 2017;14(1):70.CrossRefPubMedPubMedCentral
46.
go back to reference Steinfeld E, Danford G, editors. Enabling Environments: Measuring the Impact of Environment on Disability and Rehabilitation. New York NY: Kluwer/Plenum; 1999. p. 117–20. Steinfeld E, Danford G, editors. Enabling Environments: Measuring the Impact of Environment on Disability and Rehabilitation. New York NY: Kluwer/Plenum; 1999. p. 117–20.
47.
go back to reference Kazdin AE. Statistical Analyses for Single-Case Experimental Designs. In: Barlow DH, Hersen M, editors. Single Case Experimental Designs. Second ed. New York NY: Pergamon Presss; 1984. p. 285–324. Kazdin AE. Statistical Analyses for Single-Case Experimental Designs. In: Barlow DH, Hersen M, editors. Single Case Experimental Designs. Second ed. New York NY: Pergamon Presss; 1984. p. 285–324.
48.
go back to reference Payton OD. Group Experimental Designs. In: Payton OD, Sullivan MS, editors. Research: The Validation of Clinical Practice. Second ed. Philadelphia PA: F.A. Davis Company; 1989. p. 142–56. Payton OD. Group Experimental Designs. In: Payton OD, Sullivan MS, editors. Research: The Validation of Clinical Practice. Second ed. Philadelphia PA: F.A. Davis Company; 1989. p. 142–56.
49.
go back to reference Currier DP. Experimental Designs. In: Currier DP, editor. Elements of Research in Physical Therapy. Baltimore MD: Williams & Wilkins; 1990. p. 207–8. Currier DP. Experimental Designs. In: Currier DP, editor. Elements of Research in Physical Therapy. Baltimore MD: Williams & Wilkins; 1990. p. 207–8.
50.
go back to reference Manduchi R, Castano A, Talkukder A, Matthies L. Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation. Auton Robot. 2005;18:81–102.CrossRef Manduchi R, Castano A, Talkukder A, Matthies L. Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation. Auton Robot. 2005;18:81–102.CrossRef
51.
go back to reference Vandapel N, Huber DF, Kapuria A, Hebert M. Natural Terrain Classification using 3-D Ladar Data. New Orleans, LA, April: IEEE International Conference on Robotics and Automation; 2004.CrossRef Vandapel N, Huber DF, Kapuria A, Hebert M. Natural Terrain Classification using 3-D Ladar Data. New Orleans, LA, April: IEEE International Conference on Robotics and Automation; 2004.CrossRef
52.
go back to reference Hebert M, Vandapel N. Terrain Classification Techniques from Ladar Data for Autonomous Navigation. In: Proc Collaborative Technology Alliances conference; 2003. Hebert M, Vandapel N. Terrain Classification Techniques from Ladar Data for Autonomous Navigation. In: Proc Collaborative Technology Alliances conference; 2003.
53.
go back to reference Bellutta P, Manduchi L, Matthies K, Owens K, Rankin A. Terrain Perception for Demo III. In: Proc IEEE Intelligent Vehicles Symposium. Dearborn: MI; 2000. p. 326–32. Bellutta P, Manduchi L, Matthies K, Owens K, Rankin A. Terrain Perception for Demo III. In: Proc IEEE Intelligent Vehicles Symposium. Dearborn: MI; 2000. p. 326–32.
54.
go back to reference Castano R, Manduchi R, Fox J. Classification Experiments on Real-world Textures. Workshop on Empirical Evaluation in Computer Vision, Kauai, HI, 2001. Castano R, Manduchi R, Fox J. Classification Experiments on Real-world Textures. Workshop on Empirical Evaluation in Computer Vision, Kauai, HI, 2001.
55.
go back to reference O’Sullivan S. An Empirical Evaluation of Map Building Methodologies in Mobile Robotics Using the Feature Prediction Sonar Noise Filter and Metric Grid Map Benchmarking Suite. Ireland: MSc Thesis, University of Limerick; 2003. O’Sullivan S. An Empirical Evaluation of Map Building Methodologies in Mobile Robotics Using the Feature Prediction Sonar Noise Filter and Metric Grid Map Benchmarking Suite. Ireland: MSc Thesis, University of Limerick; 2003.
Metadata
Title
Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events
Authors
Kiley L. Armstrong
Lisa M. Lombardo
Kevin M. Foglyano
Musa L. Audu
Ronald J. Triolo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0362-2

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue