Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Review

Skeletal muscle mechanics, energetics and plasticity

Authors: Richard L. Lieber, Thomas J. Roberts, Silvia S. Blemker, Sabrina S. M. Lee, Walter Herzog

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle spasticity following stroke or in children with cerebral palsy. She then discusses the merits of ultrasound based elastography, and the clinical possibilities this technique might hold. Overall, we are treated to a vast array of basic and clinical problems in skeletal muscle mechanics and physiology, with some solutions, and many suggestions for future research.
Literature
1.
go back to reference Gans C, Bock W. The functional significance of muscle architecture: a theoretical analysis. Adv Anat Embryol Cell Biol. 1965;38:115–42. Gans C, Bock W. The functional significance of muscle architecture: a theoretical analysis. Adv Anat Embryol Cell Biol. 1965;38:115–42.
2.
go back to reference Lieber R, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.PubMedCrossRef Lieber R, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.PubMedCrossRef
3.
go back to reference Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, et al. architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.PubMed Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, et al. architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.PubMed
4.
go back to reference Powell P, Roy R, Kanim P, Bello MA, Edgerton VR. Predictability Of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol. 1984;57:1715–21.PubMed Powell P, Roy R, Kanim P, Bello MA, Edgerton VR. Predictability Of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol. 1984;57:1715–21.PubMed
5.
go back to reference Winters T, Takahashi M, Lieber R, Ward S. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. J Biomech. 2011;44:109–15.PubMedPubMedCentralCrossRef Winters T, Takahashi M, Lieber R, Ward S. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. J Biomech. 2011;44:109–15.PubMedPubMedCentralCrossRef
6.
go back to reference Lieber R, Jacobson M, Fazeli B, Abrams R, Botte M. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. J Hand Surg Am. 1992;17A:787–98.CrossRef Lieber R, Jacobson M, Fazeli B, Abrams R, Botte M. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. J Hand Surg Am. 1992;17A:787–98.CrossRef
7.
go back to reference Ward S, Eng C, Smallwood L, Lieber R. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074–82.PubMedCrossRef Ward S, Eng C, Smallwood L, Lieber R. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074–82.PubMedCrossRef
8.
go back to reference Burkholder T, Lieber R. Sarcomere length operating range of muscles during movement. J Exp Biol. 2001;204:1529–36.PubMed Burkholder T, Lieber R. Sarcomere length operating range of muscles during movement. J Exp Biol. 2001;204:1529–36.PubMed
9.
go back to reference Takahashi M, Ward S, Fridén J, Lieber R. Muscle excursion does not correlate with increased serial sarcomere number after muscle adaptation to stretched tendon transfer. J Orthop Res. 2012; Takahashi M, Ward S, Fridén J, Lieber R. Muscle excursion does not correlate with increased serial sarcomere number after muscle adaptation to stretched tendon transfer. J Orthop Res. 2012;
10.
go back to reference Lieber R, Ward S. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol. 2013;305:C241–52.PubMedPubMedCentralCrossRef Lieber R, Ward S. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol. 2013;305:C241–52.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Lieber R, Roos K, Lubell B, Cline J, Baskin R. High speed digital data acquisition of sarcomere length from isolated skeletal and cardiac muscle cells. IEEE Trans Biomed Eng. 1983;30:50–7.PubMedCrossRef Lieber R, Roos K, Lubell B, Cline J, Baskin R. High speed digital data acquisition of sarcomere length from isolated skeletal and cardiac muscle cells. IEEE Trans Biomed Eng. 1983;30:50–7.PubMedCrossRef
13.
go back to reference Lieber R, Baskin R. Intersarcomere dynamics of single muscle fibers during fixed-end tetani. J Gen Physiol. 1983;82:347–64.PubMedCrossRef Lieber R, Baskin R. Intersarcomere dynamics of single muscle fibers during fixed-end tetani. J Gen Physiol. 1983;82:347–64.PubMedCrossRef
14.
go back to reference Lieber R, Loren G, Fridén J. Vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol. 1994;71:874–81.PubMed Lieber R, Loren G, Fridén J. Vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol. 1994;71:874–81.PubMed
15.
go back to reference Loren G, Shoemaker S, Burkholder T, Jacobson M, Fridén J, Lieber R. Human wrist motors: biomechanical design and application to tendon transfers. J Biomech. 1996;29:331–42.PubMedCrossRef Loren G, Shoemaker S, Burkholder T, Jacobson M, Fridén J, Lieber R. Human wrist motors: biomechanical design and application to tendon transfers. J Biomech. 1996;29:331–42.PubMedCrossRef
16.
go back to reference Ward S, Kim C, Eng C, Lj G, Tomiya A, Garfin S, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J bone Jt. Surg Am. 2009;91:176–85.CrossRef Ward S, Kim C, Eng C, Lj G, Tomiya A, Garfin S, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J bone Jt. Surg Am. 2009;91:176–85.CrossRef
17.
go back to reference Ward S, Tomiya A, Regev G, Thacker B, Benzl R, Kim C, et al. Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. J Biomech. 2009;42:1384–9.PubMedPubMedCentralCrossRef Ward S, Tomiya A, Regev G, Thacker B, Benzl R, Kim C, et al. Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. J Biomech. 2009;42:1384–9.PubMedPubMedCentralCrossRef
19.
go back to reference Keenan M. The orthopaedic management of spasticity. J Head Trauma Rehabil. 1987;12:62–71.CrossRef Keenan M. The orthopaedic management of spasticity. J Head Trauma Rehabil. 1987;12:62–71.CrossRef
20.
go back to reference Lieber R, Fridén J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25:265–70.PubMedCrossRef Lieber R, Fridén J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25:265–70.PubMedCrossRef
21.
go back to reference Smith L, Chambers H, Lieber R. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013;55:264–70.PubMedCrossRef Smith L, Chambers H, Lieber R. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013;55:264–70.PubMedCrossRef
22.
go back to reference Dayanidhi S, Lieber R. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve. 2014;50:723–32.PubMedPubMedCentralCrossRef Dayanidhi S, Lieber R. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve. 2014;50:723–32.PubMedPubMedCentralCrossRef
23.
go back to reference Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15:35–43.PubMedCrossRef Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15:35–43.PubMedCrossRef
24.
go back to reference Williams P, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127:459–68.PubMedPubMedCentral Williams P, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127:459–68.PubMedPubMedCentral
25.
go back to reference Williams P, Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibers. J Anat. 1973;116:45–55.PubMedPubMedCentral Williams P, Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibers. J Anat. 1973;116:45–55.PubMedPubMedCentral
26.
go back to reference Boakes J, Foran J, Ward S, Lieber R. Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin Orthop Rel Res. 2007;456:250–3.CrossRef Boakes J, Foran J, Ward S, Lieber R. Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin Orthop Rel Res. 2007;456:250–3.CrossRef
27.
go back to reference Green D, Hotchkiss R, Pederson W, Wolfe S. Green’s operative hand surgery (5 ed). New York: Churchill Livingstone; 2005. Green D, Hotchkiss R, Pederson W, Wolfe S. Green’s operative hand surgery (5 ed). New York: Churchill Livingstone; 2005.
28.
go back to reference Takahashi M, Ward S, Marchuk L, Frank C, Lieber R. Asynchronous muscle and tendon adaptation after surgical tensioning procedures. J Bone Jt Surg Am. 2010;92:664–74.CrossRef Takahashi M, Ward S, Marchuk L, Frank C, Lieber R. Asynchronous muscle and tendon adaptation after surgical tensioning procedures. J Bone Jt Surg Am. 2010;92:664–74.CrossRef
29.
go back to reference Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17:359–411.PubMed Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17:359–411.PubMed
30.
go back to reference Delp S, Loan JA. Graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med. 1995;25:21–34.PubMedCrossRef Delp S, Loan JA. Graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med. 1995;25:21–34.PubMedCrossRef
32.
go back to reference Galantis A, Woledge R. The theoretical limits to the power output of a muscle-tendon complex with inertial and gravitational loads. Proc Biol Sci. 2003;270:1493–8.PubMedPubMedCentralCrossRef Galantis A, Woledge R. The theoretical limits to the power output of a muscle-tendon complex with inertial and gravitational loads. Proc Biol Sci. 2003;270:1493–8.PubMedPubMedCentralCrossRef
34.
go back to reference Marsh R, John-Alder H. Jumping performance of hylid frogs measured with high-speed cine film. J Exp Biol. 1994;188:131–41.PubMed Marsh R, John-Alder H. Jumping performance of hylid frogs measured with high-speed cine film. J Exp Biol. 1994;188:131–41.PubMed
35.
go back to reference Aerts P. Vertical jumping in Galago Senegalensis: the quest for an obligate mechanical power amplifier. Phil Trans Roy Soc B. 1997;353:1607–20.CrossRef Aerts P. Vertical jumping in Galago Senegalensis: the quest for an obligate mechanical power amplifier. Phil Trans Roy Soc B. 1997;353:1607–20.CrossRef
36.
go back to reference Patek S, Dudek D, Rosario M. From bouncy legs to poisoned arrows: elastic movements in invertebrates. J Exp Biol. 2011;214:1973–80.PubMedCrossRef Patek S, Dudek D, Rosario M. From bouncy legs to poisoned arrows: elastic movements in invertebrates. J Exp Biol. 2011;214:1973–80.PubMedCrossRef
38.
go back to reference Roberts T, Scales J. Mechanical power output during running accelerations in wild turkeys. J Exp Biol. 2002;205:1485–94.PubMed Roberts T, Scales J. Mechanical power output during running accelerations in wild turkeys. J Exp Biol. 2002;205:1485–94.PubMed
39.
go back to reference Bobbert MF. Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study. J Exp Biol. 2001;204:533–42.PubMed Bobbert MF. Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study. J Exp Biol. 2001;204:533–42.PubMed
40.
go back to reference Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41:186–93.PubMedCrossRef Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41:186–93.PubMedCrossRef
41.
go back to reference Konow N, Roberts T. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc Biol Sci. 2015;282:20142800.PubMedPubMedCentralCrossRef Konow N, Roberts T. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc Biol Sci. 2015;282:20142800.PubMedPubMedCentralCrossRef
42.
go back to reference Roberts T, Chen M, Taylor C. Energetics of bipedal running. II. Limb design and running mechanics. J Exp Biol. 1998;201:2753–62.PubMed Roberts T, Chen M, Taylor C. Energetics of bipedal running. II. Limb design and running mechanics. J Exp Biol. 1998;201:2753–62.PubMed
43.
go back to reference Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris C. Vivo behaviour of human muscle tendon during walking. Proc R Soc Lond B Biol Sci. 2001;268:229–33.CrossRef Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris C. Vivo behaviour of human muscle tendon during walking. Proc R Soc Lond B Biol Sci. 2001;268:229–33.CrossRef
44.
go back to reference Holt N, Roberts T, Askew G. The energetic benefits of tendon springs in running: is the reduction of muscle work important? J Exp Biol. 2014;217:4365–71.PubMedPubMedCentralCrossRef Holt N, Roberts T, Askew G. The energetic benefits of tendon springs in running: is the reduction of muscle work important? J Exp Biol. 2014;217:4365–71.PubMedPubMedCentralCrossRef
45.
go back to reference Biewener A, Roberts T. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci Rev. 2000;28:99–107.PubMed Biewener A, Roberts T. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci Rev. 2000;28:99–107.PubMed
47.
go back to reference Ramsey R, Street S. The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J Cell Comp Physiol. 1940;15:11–34.CrossRef Ramsey R, Street S. The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J Cell Comp Physiol. 1940;15:11–34.CrossRef
48.
go back to reference Purslow P. Strain-induced reorientation of an intramuscular connective tissue network: implications for passive muscle elasticity. J Biomech. 1989;22:21–31.PubMedCrossRef Purslow P. Strain-induced reorientation of an intramuscular connective tissue network: implications for passive muscle elasticity. J Biomech. 1989;22:21–31.PubMedCrossRef
49.
go back to reference Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, et al. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A. 2003;100:13716–21.PubMedPubMedCentralCrossRef Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, et al. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A. 2003;100:13716–21.PubMedPubMedCentralCrossRef
50.
go back to reference Colombini B, Nocella M, Bagni M. Non-crossbridge stiffness in active muscle fibres. J Exp Biol. 2016;219:153–60.PubMedCrossRef Colombini B, Nocella M, Bagni M. Non-crossbridge stiffness in active muscle fibres. J Exp Biol. 2016;219:153–60.PubMedCrossRef
51.
go back to reference Herzog W, Schappacher G, DuVall M, Leonard T, Herzog J. Residual force enhancement following eccentric contractions: a new mechanism involving Titin. Physiol Bethesda. 2016;31:300–12.CrossRef Herzog W, Schappacher G, DuVall M, Leonard T, Herzog J. Residual force enhancement following eccentric contractions: a new mechanism involving Titin. Physiol Bethesda. 2016;31:300–12.CrossRef
52.
go back to reference Nishikawa K, Monroy J, Uyeno T, Yeo S, Pai D, Lindstedt S. Is Titin a “winding filament”? A new twist on muscle contraction. Proc Biol Sci. 2012;279:981–90.PubMedCrossRef Nishikawa K, Monroy J, Uyeno T, Yeo S, Pai D, Lindstedt S. Is Titin a “winding filament”? A new twist on muscle contraction. Proc Biol Sci. 2012;279:981–90.PubMedCrossRef
54.
go back to reference Prado L, Makarenko I, Andresen C, Krüger M, Opitz C, Linke W. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126:461–80.PubMedPubMedCentralCrossRef Prado L, Makarenko I, Andresen C, Krüger M, Opitz C, Linke W. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126:461–80.PubMedPubMedCentralCrossRef
55.
go back to reference Smith L, Lee K, Ward S, Chambers H, Lieber R. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol. 2011;589:2625–39.PubMedPubMedCentralCrossRef Smith L, Lee K, Ward S, Chambers H, Lieber R. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol. 2011;589:2625–39.PubMedPubMedCentralCrossRef
56.
go back to reference Gillies A, Lieber R. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.PubMedPubMedCentral Gillies A, Lieber R. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.PubMedPubMedCentral
57.
go back to reference Baskin R, Paolini P. Volume change and pressure development in muscle during contraction. Am J Phys. 1967;213:1025–30. Baskin R, Paolini P. Volume change and pressure development in muscle during contraction. Am J Phys. 1967;213:1025–30.
58.
go back to reference Brainerd E, Azizi E. Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature. J Exp Biol. 2005;208:3249–61.PubMedCrossRef Brainerd E, Azizi E. Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature. J Exp Biol. 2005;208:3249–61.PubMedCrossRef
61.
go back to reference Gautel M, Djinovic-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol. 2016;219:135–45.PubMedCrossRef Gautel M, Djinovic-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol. 2016;219:135–45.PubMedCrossRef
62.
go back to reference Sartorelli V, Fulco M. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE. 2004;2004:re11. Sartorelli V, Fulco M. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE. 2004;2004:re11.
63.
go back to reference Phillips S, Glover E, Rennie M. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107:645–54.PubMedCrossRef Phillips S, Glover E, Rennie M. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107:645–54.PubMedCrossRef
65.
go back to reference Tatsumi R, Sheehan S, Iwasaki H, Hattori A, Allen R. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res. 2001;267:107–14.PubMedCrossRef Tatsumi R, Sheehan S, Iwasaki H, Hattori A, Allen R. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res. 2001;267:107–14.PubMedCrossRef
66.
go back to reference Fu J, Wang Y, Yang M, Desai R, Yu X, Liu Z, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7:733–6.PubMedPubMedCentralCrossRef Fu J, Wang Y, Yang M, Desai R, Yu X, Liu Z, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7:733–6.PubMedPubMedCentralCrossRef
67.
go back to reference Souza S, Agra L, Santos C, Barreto E, Hickmann J, Fonseca E. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J. 2014;43:573–9.PubMedCrossRef Souza S, Agra L, Santos C, Barreto E, Hickmann J, Fonseca E. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J. 2014;43:573–9.PubMedCrossRef
68.
go back to reference Tomasek J, Gabbiani G, Hinz B, Chaponnier C, Brown R. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.PubMedCrossRef Tomasek J, Gabbiani G, Hinz B, Chaponnier C, Brown R. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.PubMedCrossRef
69.
go back to reference Yang G, Im H, Wang J. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005;363:166–72.PubMedPubMedCentralCrossRef Yang G, Im H, Wang J. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005;363:166–72.PubMedPubMedCentralCrossRef
70.
go back to reference Sawaguchi N, Majima T, Funakoshi T, Shimode K, Harada K, Minami A, et al. Effect of cyclic three-dimensional strain on cell proliferation and collagen synthesis of fibroblast-seeded chitosan-hyaluronan hybrid polymer fiber. J Orthop Sci. 2010;15:569–77.PubMedCrossRef Sawaguchi N, Majima T, Funakoshi T, Shimode K, Harada K, Minami A, et al. Effect of cyclic three-dimensional strain on cell proliferation and collagen synthesis of fibroblast-seeded chitosan-hyaluronan hybrid polymer fiber. J Orthop Sci. 2010;15:569–77.PubMedCrossRef
71.
go back to reference Skutek M, Van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching of human patellar tendon fibroblasts: activation of JNK and modulation of apoptosis. Knee Surg Sports Traumatol Arthrosc. 2003;11:122–9.PubMedCrossRef Skutek M, Van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching of human patellar tendon fibroblasts: activation of JNK and modulation of apoptosis. Knee Surg Sports Traumatol Arthrosc. 2003;11:122–9.PubMedCrossRef
72.
go back to reference Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol. 2001;86:48–52.PubMedCrossRef Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol. 2001;86:48–52.PubMedCrossRef
73.
go back to reference Postlethwaite A, Keski J-O, Moses H, Kang A. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med. 1987;165:251–6.PubMedCrossRef Postlethwaite A, Keski J-O, Moses H, Kang A. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med. 1987;165:251–6.PubMedCrossRef
74.
go back to reference Vandenburgh H, Karlisch P, Shansky J, Feldstein R. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Phys. 1991;260:C475–84. Vandenburgh H, Karlisch P, Shansky J, Feldstein R. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Phys. 1991;260:C475–84.
75.
go back to reference Battegay E, Raines E, Colbert T, Ross R. TNF-alpha stimulation of fibroblast proliferation. Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression. J Immunol. 1995;154:6040–7.PubMed Battegay E, Raines E, Colbert T, Ross R. TNF-alpha stimulation of fibroblast proliferation. Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression. J Immunol. 1995;154:6040–7.PubMed
76.
go back to reference Ladner K, Caligiuri M, Guttridge D. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem. 2003;278:2294–303.PubMedCrossRef Ladner K, Caligiuri M, Guttridge D. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem. 2003;278:2294–303.PubMedCrossRef
77.
go back to reference Jozsa L, Kannus P, Thoring J, Reffy A, Jarvinen M, Kvist M. The effect of tenotomy and immobilisation on intramuscular connective tissue. A morphometric and microscopic study in rat calf muscles. J bone Jt Surg Br. 1990;72:293–7. Jozsa L, Kannus P, Thoring J, Reffy A, Jarvinen M, Kvist M. The effect of tenotomy and immobilisation on intramuscular connective tissue. A morphometric and microscopic study in rat calf muscles. J bone Jt Surg Br. 1990;72:293–7.
78.
go back to reference Jarvinen T, Jozsa L, Kannus P, Jarvinen T, Jarvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002;23:245–54.PubMedCrossRef Jarvinen T, Jozsa L, Kannus P, Jarvinen T, Jarvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002;23:245–54.PubMedCrossRef
81.
go back to reference Razumova MV, Bukatina AE, Campbell KB. Stiffness-distortion sarcomere model for muscle simulation. J Appl Physiol. 1999;87:1861–76.PubMed Razumova MV, Bukatina AE, Campbell KB. Stiffness-distortion sarcomere model for muscle simulation. J Appl Physiol. 1999;87:1861–76.PubMed
82.
go back to reference Campbell K. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLoS Comput Biol. 2009;5:e1000560.PubMedPubMedCentralCrossRef Campbell K. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLoS Comput Biol. 2009;5:e1000560.PubMedPubMedCentralCrossRef
83.
go back to reference Wakeling J, Lee S, Arnold A, de Boef Miara M, Biewener AA. muscle’s force depends on the recruitment patterns of its fibers. Ann Biomed Eng. 2012;40:1708–20.PubMedPubMedCentralCrossRef Wakeling J, Lee S, Arnold A, de Boef Miara M, Biewener AA. muscle’s force depends on the recruitment patterns of its fibers. Ann Biomed Eng. 2012;40:1708–20.PubMedPubMedCentralCrossRef
84.
85.
go back to reference Virgilio KM, Martin K, Peirce S, Blemker S. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus. 2015;5:20140080.PubMedPubMedCentralCrossRef Virgilio KM, Martin K, Peirce S, Blemker S. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus. 2015;5:20140080.PubMedPubMedCentralCrossRef
86.
go back to reference Blemker S, Pinsky P, Delp S. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech. 2005;38:657–65.PubMedCrossRef Blemker S, Pinsky P, Delp S. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech. 2005;38:657–65.PubMedCrossRef
87.
go back to reference Rehorn M, Blemker S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43:2574–81.PubMedPubMedCentralCrossRef Rehorn M, Blemker S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43:2574–81.PubMedPubMedCentralCrossRef
88.
go back to reference Fiorentino N, Rehorn M, Chumanov E, Thelen D, Blemker S. Computational models predict larger muscle tissue strains at faster sprinting speeds. Med Sci Sports Exerc. 2014;46:776–86.PubMedPubMedCentralCrossRef Fiorentino N, Rehorn M, Chumanov E, Thelen D, Blemker S. Computational models predict larger muscle tissue strains at faster sprinting speeds. Med Sci Sports Exerc. 2014;46:776–86.PubMedPubMedCentralCrossRef
89.
go back to reference Delp S, Anderson F, Arnold A, Loan P, Habib A, John C, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54:1940–50.PubMedCrossRef Delp S, Anderson F, Arnold A, Loan P, Habib A, John C, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54:1940–50.PubMedCrossRef
90.
go back to reference An G. Integrating physiology across scales and formalizing hypothesis exploration with agent-based modeling. J Appl Physiol. 2015;118:1191–2.PubMedCrossRef An G. Integrating physiology across scales and formalizing hypothesis exploration with agent-based modeling. J Appl Physiol. 2015;118:1191–2.PubMedCrossRef
91.
go back to reference Martin K, Blemker S, Peirce S. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J Appl Physiol. 2015;118:1299–309.PubMedPubMedCentralCrossRef Martin K, Blemker S, Peirce S. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J Appl Physiol. 2015;118:1299–309.PubMedPubMedCentralCrossRef
92.
go back to reference Martin K, Virgilio K, Peirce S, Blemker S. Agent-based model of inflammation and regeneration following injury. Cells Tissues Organs. 2015;Accepted. Martin K, Virgilio K, Peirce S, Blemker S. Agent-based model of inflammation and regeneration following injury. Cells Tissues Organs. 2015;Accepted.
93.
go back to reference Martin K, Kegelman C, Virgilio K, Passipieri J, Christ G, Blemker S, et al. Silico and in vivo experiments reveal M-CSF injections accelerate regeneration following muscle laceration. Ann Biomed Eng. 2016; Martin K, Kegelman C, Virgilio K, Passipieri J, Christ G, Blemker S, et al. Silico and in vivo experiments reveal M-CSF injections accelerate regeneration following muscle laceration. Ann Biomed Eng. 2016;
94.
go back to reference Fiorentino N, Blemker S. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.PubMedPubMedCentralCrossRef Fiorentino N, Blemker S. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.PubMedPubMedCentralCrossRef
95.
go back to reference Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51:59–63.PubMedCrossRef Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51:59–63.PubMedCrossRef
96.
go back to reference Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R. MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain and Development. 2006;28:500–6.PubMedCrossRef Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R. MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain and Development. 2006;28:500–6.PubMedCrossRef
97.
go back to reference Malaiya R, McNee A, Fry N, Eve L, Gough M, Shortland A. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17:657–63.PubMedCrossRef Malaiya R, McNee A, Fry N, Eve L, Gough M, Shortland A. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17:657–63.PubMedCrossRef
98.
go back to reference Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543–8.PubMedCrossRef Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543–8.PubMedCrossRef
99.
go back to reference Bandholm T, Magnusson P, Jensen B, Sonne-Holm S. Dorsiflexor muscle-group thickness in children with cerebral palsy: relation to cross-sectional area. NeuroRehabilitation. 2009;24:299–306.PubMed Bandholm T, Magnusson P, Jensen B, Sonne-Holm S. Dorsiflexor muscle-group thickness in children with cerebral palsy: relation to cross-sectional area. NeuroRehabilitation. 2009;24:299–306.PubMed
100.
go back to reference Fry N, Gough M, McNee A, Shortland A. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2007;27:769–74.PubMedCrossRef Fry N, Gough M, McNee A, Shortland A. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2007;27:769–74.PubMedCrossRef
101.
go back to reference Oberhofer K, Stott N, Mithraratne K, Anderson I. Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech. 2010;25:88–94.CrossRef Oberhofer K, Stott N, Mithraratne K, Anderson I. Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech. 2010;25:88–94.CrossRef
103.
go back to reference Kwah L, Herbert R, Harvey L, Diong J, Clarke J, Martin J, et al. Passive mechanical properties of gastrocnemius muscles of people with ankle contracture after stroke. Arch Phys Med Rehabil. 2012;93:1185–90.PubMedCrossRef Kwah L, Herbert R, Harvey L, Diong J, Clarke J, Martin J, et al. Passive mechanical properties of gastrocnemius muscles of people with ankle contracture after stroke. Arch Phys Med Rehabil. 2012;93:1185–90.PubMedCrossRef
104.
go back to reference Li L, Tong K, Hu X. The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound. Arch Phys Med Rehabil. 2007;88:243–50.PubMedCrossRef Li L, Tong K, Hu X. The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound. Arch Phys Med Rehabil. 2007;88:243–50.PubMedCrossRef
105.
go back to reference Gao F, Zhao H, Gaebler-Spira D, Zhang L-Q. Vivo evaluations of morphologic changes of gastrocnemius muscle fascicles and achilles tendon in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:364–471.PubMedCrossRef Gao F, Zhao H, Gaebler-Spira D, Zhang L-Q. Vivo evaluations of morphologic changes of gastrocnemius muscle fascicles and achilles tendon in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:364–471.PubMedCrossRef
106.
go back to reference Mohagheghi A, Khan T, Meadows T, Giannikas K, Baltzopoulos V, Maganaris C. Vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol. 2008;50:44–50.PubMedCrossRef Mohagheghi A, Khan T, Meadows T, Giannikas K, Baltzopoulos V, Maganaris C. Vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol. 2008;50:44–50.PubMedCrossRef
107.
go back to reference Mohagheghi A, Khan T, Meadows T, Giannikas K, Baltzopoulos V, Maganaris C. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech. 2007;22:718–24.CrossRef Mohagheghi A, Khan T, Meadows T, Giannikas K, Baltzopoulos V, Maganaris C. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech. 2007;22:718–24.CrossRef
108.
go back to reference Wren T, Cheatwood A, Rethlefsen S, Hara R, Perez F, Kay R. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. J Pediatr Orthop. 2010;30:479–84.PubMedCrossRef Wren T, Cheatwood A, Rethlefsen S, Hara R, Perez F, Kay R. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. J Pediatr Orthop. 2010;30:479–84.PubMedCrossRef
109.
go back to reference Cromie M, Sanchez G, Schnitzer M, Delp S. Sarcomere lengths in human extensor carpi radialis brevis measured by microendoscopy. Muscle Nerve. 2013;48:286–92.PubMedCrossRef Cromie M, Sanchez G, Schnitzer M, Delp S. Sarcomere lengths in human extensor carpi radialis brevis measured by microendoscopy. Muscle Nerve. 2013;48:286–92.PubMedCrossRef
110.
go back to reference Llewellyn M, Barretto R, Delp S, Schnitzer M. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2008;454:784–8.PubMedPubMedCentral Llewellyn M, Barretto R, Delp S, Schnitzer M. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2008;454:784–8.PubMedPubMedCentral
111.
go back to reference Gao F, Grant T, Roth E, Zhang L. Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors. Arch Phys Med Rehabil. 2009;90:819–26.PubMedCrossRef Gao F, Grant T, Roth E, Zhang L. Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors. Arch Phys Med Rehabil. 2009;90:819–26.PubMedCrossRef
112.
go back to reference Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117:355–63.PubMedCrossRef Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117:355–63.PubMedCrossRef
113.
go back to reference Katz R, Rymer W. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil. 1989;70:144–55.PubMed Katz R, Rymer W. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil. 1989;70:144–55.PubMed
114.
go back to reference de Vlugt E, de Groot J, Schenkeveld K, Arendzen J, van der Helm F, Meskers C. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroengineering Rehabil. 2010;7:35.CrossRef de Vlugt E, de Groot J, Schenkeveld K, Arendzen J, van der Helm F, Meskers C. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroengineering Rehabil. 2010;7:35.CrossRef
116.
go back to reference Sinkjaer T, Toft E, Andreassen S, Hornemann B. Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol. 1988;60:1110–21.PubMed Sinkjaer T, Toft E, Andreassen S, Hornemann B. Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol. 1988;60:1110–21.PubMed
117.
go back to reference Meyer G, Lieber R. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech. 2011;44:771–3.PubMedCrossRef Meyer G, Lieber R. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech. 2011;44:771–3.PubMedCrossRef
118.
go back to reference Lamontagne A, Malouin F, Richards C. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil. 2000;81:351–8.PubMedCrossRef Lamontagne A, Malouin F, Richards C. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil. 2000;81:351–8.PubMedCrossRef
119.
go back to reference Salsich G, Mueller M. Effect of plantar flexor muscle stiffness on selected gait characteristics. Gait Posture. 2000;11:207–16.PubMedCrossRef Salsich G, Mueller M. Effect of plantar flexor muscle stiffness on selected gait characteristics. Gait Posture. 2000;11:207–16.PubMedCrossRef
120.
go back to reference Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42:438–41.PubMedCrossRef Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42:438–41.PubMedCrossRef
121.
go back to reference Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45:978–84.PubMedCrossRef Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45:978–84.PubMedCrossRef
122.
go back to reference Nordez A, Hug F. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol. 2010;108:1389–94.PubMedCrossRef Nordez A, Hug F. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol. 2010;108:1389–94.PubMedCrossRef
123.
go back to reference Lee SSM, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-impaired muscle. Clin Biomech. 2015;30:269–75.CrossRef Lee SSM, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-impaired muscle. Clin Biomech. 2015;30:269–75.CrossRef
124.
go back to reference Kwon D, Park G, Lee S, Chung I. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology. 2012;263:794–801.PubMedCrossRef Kwon D, Park G, Lee S, Chung I. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology. 2012;263:794–801.PubMedCrossRef
125.
go back to reference Park G-Y, Kwon DR. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch Phys Med Rehabil. 2012;93:2085–9.PubMedCrossRef Park G-Y, Kwon DR. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch Phys Med Rehabil. 2012;93:2085–9.PubMedCrossRef
126.
go back to reference Lee S, Gaebler-Spira D, Zhang L-Q, Rymer W, Steele KM. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech. 2016;31:20–8.CrossRef Lee S, Gaebler-Spira D, Zhang L-Q, Rymer W, Steele KM. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech. 2016;31:20–8.CrossRef
127.
go back to reference Fridén J, Lieber R. Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc. 1992;24:521–30.PubMedCrossRef Fridén J, Lieber R. Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc. 1992;24:521–30.PubMedCrossRef
128.
Metadata
Title
Skeletal muscle mechanics, energetics and plasticity
Authors
Richard L. Lieber
Thomas J. Roberts
Silvia S. Blemker
Sabrina S. M. Lee
Walter Herzog
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0318-y

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue