Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study

Authors: F. Resquín, J. Gonzalez-Vargas, J. Ibáñez, F. Brunetti, I. Dimbwadyo, L. Carrasco, S. Alves, C. Gonzalez-Alted, A. Gomez-Blanco, J. L. Pons

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Brain injury survivors often present upper-limb motor impairment affecting the execution of functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of upper-limb reaching movements after a brain lesion affecting the motor function.

Methods

The presented system is comprised of four main components. The hybrid assistance is given by a passive exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall satisfaction and emotional response of the users after they used the system was assessed.

Results

In the experiment with healthy subjects, a significant reduction of the tracking error was found during the execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was found together with an increasing trend in the task performance as the movement was repeated. Brain injury patients expressed a great acceptance in using the system as a rehabilitation tool.

Conclusions

The study demonstrates the technical feasibility of using the hybrid robotic system for reaching rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid robotic system.

Trial registration

Retrospective trial registration in ISRCTN Register with study ID ISRCTN12843006.
Literature
1.
go back to reference Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.CrossRefPubMed Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.CrossRefPubMed
2.
go back to reference Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.CrossRefPubMed Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.CrossRefPubMed
3.
go back to reference Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.CrossRefPubMedPubMedCentral Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.CrossRefPubMedPubMedCentral
4.
go back to reference Resquín F, Cuesta Gómez A, Gonzalez-Vargas J, Brunetti F, Torricelli D, Molina Rueda F, Cano de la Cuerda R, Miangolarra JC, Pons JL. Hybrid robotic systems for upper limb rehabilitation after stroke: A review. Med Eng Phys. 2016;38(11):1279–88.CrossRefPubMed Resquín F, Cuesta Gómez A, Gonzalez-Vargas J, Brunetti F, Torricelli D, Molina Rueda F, Cano de la Cuerda R, Miangolarra JC, Pons JL. Hybrid robotic systems for upper limb rehabilitation after stroke: A review. Med Eng Phys. 2016;38(11):1279–88.CrossRefPubMed
5.
go back to reference Barker RN, Brauer SG, Carson RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: A randomized clinical trial. Stroke. 2008;39(6):1800–7.CrossRefPubMed Barker RN, Brauer SG, Carson RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: A randomized clinical trial. Stroke. 2008;39(6):1800–7.CrossRefPubMed
6.
go back to reference Wu F, Lin Y, Kuo T, Luh J, Lai J. Clinical effects of combined bilateral arm training with functional electrical stimulation in patients with stroke. In: 2011 IEEE InternationalConference on Rehabilitation Robotics. IEEE; 2011. p. 1–7. doi:10.1109/ICORR.2011.5975367. Wu F, Lin Y, Kuo T, Luh J, Lai J. Clinical effects of combined bilateral arm training with functional electrical stimulation in patients with stroke. In: 2011 IEEE InternationalConference on Rehabilitation Robotics. IEEE; 2011. p. 1–7. doi:10.​1109/​ICORR.​2011.​5975367.
7.
go back to reference Hughes AM, Freeman CT, Burridge JH, Chappell PH, Lewin PL, Rogers E. Feasibility of Iterative Learning Control Mediated by Functional Electrical Stimulation for Reaching After Stroke. SAGE Publications. Neurorehabil Neural Repair. 2009;23(6):559–68. Hughes AM, Freeman CT, Burridge JH, Chappell PH, Lewin PL, Rogers E. Feasibility of Iterative Learning Control Mediated by Functional Electrical Stimulation for Reaching After Stroke. SAGE Publications. Neurorehabil Neural Repair. 2009;23(6):559–68.
8.
go back to reference Freeman CT, Rogers E, Hughes AM, Burridge JH, Meadmore K. Iterative Learning Control in Health Care: Electrical Stimulation and Robotic-Assisted Upper-Limb Stroke Rehabilitation. IEEE Control Syst. 2012;32(1):18–43.CrossRef Freeman CT, Rogers E, Hughes AM, Burridge JH, Meadmore K. Iterative Learning Control in Health Care: Electrical Stimulation and Robotic-Assisted Upper-Limb Stroke Rehabilitation. IEEE Control Syst. 2012;32(1):18–43.CrossRef
9.
go back to reference Meadmore KL, Exell TA, Hallewell E, Hughes AM, Freeman CT, Kutlu M, Benson V, Rogers E, Burridge JH. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study. J Neuroeng Rehabil. 2014;11(1):105.CrossRefPubMedPubMedCentral Meadmore KL, Exell TA, Hallewell E, Hughes AM, Freeman CT, Kutlu M, Benson V, Rogers E, Burridge JH. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study. J Neuroeng Rehabil. 2014;11(1):105.CrossRefPubMedPubMedCentral
10.
go back to reference Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223–34.CrossRefPubMed Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223–34.CrossRefPubMed
11.
go back to reference Lynch CL, Popovic MR. Functional Electrical Stimulation. IEEE Control Syst Mag. 2008;28(2):40–50.CrossRef Lynch CL, Popovic MR. Functional Electrical Stimulation. IEEE Control Syst Mag. 2008;28(2):40–50.CrossRef
12.
go back to reference Zhang D, Guan TH, Widjaja F, Ang WT. Functional electrical stimulation in rehabilitation engineering. In: Proceedings of the 1st international convention on Rehabilitation engineering & assistive technology in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting - i-CREATe ’07. New York: ACM Press; 2007. p. 221. Zhang D, Guan TH, Widjaja F, Ang WT. Functional electrical stimulation in rehabilitation engineering. In: Proceedings of the 1st international convention on Rehabilitation engineering & assistive technology in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting - i-CREATe ’07. New York: ACM Press; 2007. p. 221.
13.
go back to reference Meadmore KL, Hughes A-M, Freeman CT, Cai Z, Tong D, Burridge JH, et al. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Journal of NeuroEngineering and Rehabilitation. 2012;9(1):32. Meadmore KL, Hughes A-M, Freeman CT, Cai Z, Tong D, Burridge JH, et al. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Journal of NeuroEngineering and Rehabilitation. 2012;9(1):32.
14.
go back to reference Freeman CT, Tong D, Meadmore K, Cai Z, Rogers E, Hughes AM, Burridge JH. Phase-lead iterative learning control algorithms for functional electrical stimulation-based stroke rehabilitation. Proc Inst Mech Eng Part I J Syst Control Eng. 2011;225(6):850–9.CrossRef Freeman CT, Tong D, Meadmore K, Cai Z, Rogers E, Hughes AM, Burridge JH. Phase-lead iterative learning control algorithms for functional electrical stimulation-based stroke rehabilitation. Proc Inst Mech Eng Part I J Syst Control Eng. 2011;225(6):850–9.CrossRef
15.
go back to reference Kawato M. Feedback-error-learning neural network for supervised motor learning. Adv neural Comput. 1990;6(3):365–72. Kawato M. Feedback-error-learning neural network for supervised motor learning. Adv neural Comput. 1990;6(3):365–72.
16.
go back to reference Kurosawa K, Futami R, Watanabe T, Hoshimiya N. Joint Angle Control by FES Using a Feedback Error Learning Controller. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):359–71.CrossRefPubMed Kurosawa K, Futami R, Watanabe T, Hoshimiya N. Joint Angle Control by FES Using a Feedback Error Learning Controller. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):359–71.CrossRefPubMed
17.
go back to reference Koike Y, Gonzalez J, Gomez J, Yu W. Implementing Feedback Error Learning for FES control. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE; 2011. p. 1324–8. Koike Y, Gonzalez J, Gomez J, Yu W. Implementing Feedback Error Learning for FES control. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE; 2011. p. 1324–8.
18.
go back to reference Resquín F, Gonzalez-Vargas J, Ibáñez J, Brunetti F, Pons JL. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation. Eur J Transl Myol. 2016;26(3). doi:10.4081/ejtm.2016.6164. Resquín F, Gonzalez-Vargas J, Ibáñez J, Brunetti F, Pons JL. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation. Eur J Transl Myol. 2016;26(3). doi:10.​4081/​ejtm.​2016.​6164.
19.
go back to reference Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. Neural Syst Rehabil Eng IEEE Trans. 2004;12(2):186–94.CrossRef Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. Neural Syst Rehabil Eng IEEE Trans. 2004;12(2):186–94.CrossRef
20.
go back to reference Cai Z, Tong D, Meadmore KL, Freeman CT, Hughes AM, Rogers E, et al. Design & control of a 3D stroke rehabilitation platform. In: 2011 IEEE International Conference on Rehabilitation Robotics. IEEE; 2011. p. 1–6. Cai Z, Tong D, Meadmore KL, Freeman CT, Hughes AM, Rogers E, et al. Design & control of a 3D stroke rehabilitation platform. In: 2011 IEEE International Conference on Rehabilitation Robotics. IEEE; 2011. p. 1–6.
21.
go back to reference Freeman CT. Upper Limb Electrical Stimulation Using Input-Output Linearization and Iterative Learning Control. IEEE Trans Control Syst Technol. Jul. 2015;23(4):1546–54.CrossRef Freeman CT. Upper Limb Electrical Stimulation Using Input-Output Linearization and Iterative Learning Control. IEEE Trans Control Syst Technol. Jul. 2015;23(4):1546–54.CrossRef
22.
go back to reference Marsland, Stephen. Machine learning: an algorithmic perspective. CRC press; 2015. Marsland, Stephen. Machine learning: an algorithmic perspective. CRC press; 2015.
23.
go back to reference Watanabe T, Fukushima K. A Study on Feedback Error Learning Controller for Functional Electrical Stimulation: Generation of Target Trajectories by Minimum Jerk Model. Artif Organs. 2011;35(3):270–4.CrossRefPubMed Watanabe T, Fukushima K. A Study on Feedback Error Learning Controller for Functional Electrical Stimulation: Generation of Target Trajectories by Minimum Jerk Model. Artif Organs. 2011;35(3):270–4.CrossRefPubMed
24.
go back to reference Popović DB. Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol. 2014;24(6):795–802.CrossRefPubMed Popović DB. Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol. 2014;24(6):795–802.CrossRefPubMed
26.
go back to reference Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.PubMed Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.PubMed
27.
go back to reference Hamilton BB, Laughlin JA, Fiedler RC, Granger CV. Interrater reliability of the 7-level functional independence measure (FIM). Scand J Rehabil Med. 1994;26(3):115–9.PubMed Hamilton BB, Laughlin JA, Fiedler RC, Granger CV. Interrater reliability of the 7-level functional independence measure (FIM). Scand J Rehabil Med. 1994;26(3):115–9.PubMed
28.
go back to reference Mahoney FI, Barthel DW. Functional Evaluation: The Barthel Index. Md State Med J. 1965;14:61–5.PubMed Mahoney FI, Barthel DW. Functional Evaluation: The Barthel Index. Md State Med J. 1965;14:61–5.PubMed
29.
go back to reference Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol. 1980;19(6):382–9.CrossRefPubMed Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol. 1980;19(6):382–9.CrossRefPubMed
30.
go back to reference Cirstea MC, Mitnitski AB, Feldman AG, Levin MF. Interjoint coordination dynamics during reaching in stroke. Exp Brain Res. 2003;151(3):289–300.CrossRefPubMed Cirstea MC, Mitnitski AB, Feldman AG, Levin MF. Interjoint coordination dynamics during reaching in stroke. Exp Brain Res. 2003;151(3):289–300.CrossRefPubMed
31.
go back to reference Demers L, Monette M, Lapierre Y, Arnold DL, Wolfson C. Reliability, validity, and applicability of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST 2.0) for adults with multiple sclerosis. Disabil Rehabil. 2002;24(1–3):21–30.CrossRefPubMed Demers L, Monette M, Lapierre Y, Arnold DL, Wolfson C. Reliability, validity, and applicability of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST 2.0) for adults with multiple sclerosis. Disabil Rehabil. 2002;24(1–3):21–30.CrossRefPubMed
32.
go back to reference Morris JD. OBSERVATIONS: SAM: The Self-Assessment Manikin - An Efficient Cross-Cultural Measurement of Emotional Response. J Advert Res. 1995;35(6):63–8. Morris JD. OBSERVATIONS: SAM: The Self-Assessment Manikin - An Efficient Cross-Cultural Measurement of Emotional Response. J Advert Res. 1995;35(6):63–8.
33.
go back to reference Watanabe T, Fukushima K. An Approach to Applying Feedback Error Learning for Functional Electrical Stimulation Controller: Computer Simulation Tests of Wrist Joint Control. Adv Artif Neural Syst. 2010;2010:1–8.CrossRef Watanabe T, Fukushima K. An Approach to Applying Feedback Error Learning for Functional Electrical Stimulation Controller: Computer Simulation Tests of Wrist Joint Control. Adv Artif Neural Syst. 2010;2010:1–8.CrossRef
34.
go back to reference Kutlu M, Freeman CT, Hallewell E, Hughes A, Laila DS. FES-based upper-limb stroke rehabilitation with advanced sensing and control. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE; 2015. p. 253–8. Kutlu M, Freeman CT, Hallewell E, Hughes A, Laila DS. FES-based upper-limb stroke rehabilitation with advanced sensing and control. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE; 2015. p. 253–8.
35.
go back to reference Hughes A, Burridge J, Freeman CT, Donnovan-Hall M, Chappell PH, Lewin PL, Rogers E, Dibb B. Stroke participants’ perceptions of robotic and electrical stimulation therapy: a new approach. Disabil Rehabil Assist Technol. 2011;6(2):130–8.CrossRefPubMed Hughes A, Burridge J, Freeman CT, Donnovan-Hall M, Chappell PH, Lewin PL, Rogers E, Dibb B. Stroke participants’ perceptions of robotic and electrical stimulation therapy: a new approach. Disabil Rehabil Assist Technol. 2011;6(2):130–8.CrossRefPubMed
36.
go back to reference Grahn C, Ekdahl L, Borgquist B. Motivation as a predictor of changes in quality of life and working ability in multidisciplinary rehabilitation. Disabil Rehabil. 2000;22(15):639–54.CrossRefPubMed Grahn C, Ekdahl L, Borgquist B. Motivation as a predictor of changes in quality of life and working ability in multidisciplinary rehabilitation. Disabil Rehabil. 2000;22(15):639–54.CrossRefPubMed
37.
go back to reference Jarrassé N, Proietti T, Crocher V, Robertson J, Sahbani A, Morel G, Roby-Brami A. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Front Hum Neurosci. 2014;8:947.PubMedPubMedCentral Jarrassé N, Proietti T, Crocher V, Robertson J, Sahbani A, Morel G, Roby-Brami A. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Front Hum Neurosci. 2014;8:947.PubMedPubMedCentral
38.
go back to reference Huang X, Naghdy F, Naghdy G, Du H, Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey. Int J Disabil Hum Dev. 2017;16(3). doi:10.1515/ijdhd-2016-0035. Huang X, Naghdy F, Naghdy G, Du H, Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey. Int J Disabil Hum Dev. 2017;16(3). doi:10.​1515/​ijdhd-2016-0035.
Metadata
Title
Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study
Authors
F. Resquín
J. Gonzalez-Vargas
J. Ibáñez
F. Brunetti
I. Dimbwadyo
L. Carrasco
S. Alves
C. Gonzalez-Alted
A. Gomez-Blanco
J. L. Pons
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0312-4

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue