Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Feature selection for elderly faller classification based on wearable sensors

Authors: Jennifer Howcroft, Jonathan Kofman, Edward D. Lemaire

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data.

Methods

A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling.

Results

The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier.

Conclusions

Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Literature
1.
2.
go back to reference Zhang M, Sawchuk AA. A Feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks: November 7-10, 2011. Beijing, China. 2011. p. 92–8. Zhang M, Sawchuk AA. A Feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks: November 7-10, 2011. Beijing, China. 2011. p. 92–8.
3.
go back to reference Hall MA, Smith LA. Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference: May 1-5, 1999. Orlando, Florida, USA. 1999. p. 235–9. Hall MA, Smith LA. Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference: May 1-5, 1999. Orlando, Florida, USA. 1999. p. 235–9.
4.
go back to reference Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.CrossRefPubMed Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.CrossRefPubMed
5.
go back to reference Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieen JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture. 2013;38:170–4.CrossRefPubMed Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieen JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture. 2013;38:170–4.CrossRefPubMed
6.
go back to reference Mignardot J-B, Deschamps T, Barrey E, Auvinet B, Berrut G, Cornu C, Constans T, de Decker L. Gait disturbances as specific predictive makers of the first fall onset in elderly people: a two-year prospective observational study. Front Aging Neurosci. 2014;6:22.CrossRefPubMedPubMedCentral Mignardot J-B, Deschamps T, Barrey E, Auvinet B, Berrut G, Cornu C, Constans T, de Decker L. Gait disturbances as specific predictive makers of the first fall onset in elderly people: a two-year prospective observational study. Front Aging Neurosci. 2014;6:22.CrossRefPubMedPubMedCentral
7.
go back to reference Liu Y, Redmond SJ, Narayanan MR, Lovell NH. Classification between non-multiple fallers and multiple fallers using a triaxial accelerometry-based system. In: Proceedings of the 33rd Annual Conference of IEEE EMBS: August 30-September 3, 2011. Boston, Massachusetts. 2011. p. 1499–502. Liu Y, Redmond SJ, Narayanan MR, Lovell NH. Classification between non-multiple fallers and multiple fallers using a triaxial accelerometry-based system. In: Proceedings of the 33rd Annual Conference of IEEE EMBS: August 30-September 3, 2011. Boston, Massachusetts. 2011. p. 1499–502.
8.
go back to reference Caby B, Kieffer S, de Saint HM, Cremer G, Macq B. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry. Biomed Eng Online. 2011;10:1.CrossRefPubMedPubMedCentral Caby B, Kieffer S, de Saint HM, Cremer G, Macq B. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry. Biomed Eng Online. 2011;10:1.CrossRefPubMedPubMedCentral
9.
go back to reference Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture. 2000;12:34–45.CrossRefPubMed Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture. 2000;12:34–45.CrossRefPubMed
10.
go back to reference Smidt GL, Arora JS, Johnston RC. Accelerographic analysis of several types of walking. Am J Phys Med. 1971;50:285–300.PubMed Smidt GL, Arora JS, Johnston RC. Accelerographic analysis of several types of walking. Am J Phys Med. 1971;50:285–300.PubMed
11.
go back to reference Liu J, Lockhart TE, Jones M, Martin T. Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans Autom Sci Eng. 2008;5:696–702.CrossRefPubMedPubMedCentral Liu J, Lockhart TE, Jones M, Martin T. Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans Autom Sci Eng. 2008;5:696–702.CrossRefPubMedPubMedCentral
12.
go back to reference Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, van Dieen JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36:527–31.CrossRefPubMed Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, van Dieen JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36:527–31.CrossRefPubMed
13.
go back to reference van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH. Assessing gait stability: The influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J Biomech. 2013;46:137–41.CrossRefPubMed van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH. Assessing gait stability: The influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J Biomech. 2013;46:137–41.CrossRefPubMed
14.
go back to reference Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H. Advancing feature selection research-ASU feature selection repository. Arizona State University. 2016. http://featureselection.asu.edu/old/featureselection_techreport.pdf. Accessed 4 Apr 2016 Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H. Advancing feature selection research-ASU feature selection repository. Arizona State University. 2016. http://​featureselection​.​asu.​edu/​old/​featureselection​_​techreport.​pdf.​ Accessed 4 Apr 2016
15.
go back to reference Liu H, Motoda H. Computational methods of feature selection. Boca Ranton: Chapman & Hall/CRC; 2008. Liu H, Motoda H. Computational methods of feature selection. Boca Ranton: Chapman & Hall/CRC; 2008.
16.
go back to reference Yu L, Liu H. Feature selection for high dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning: August 21-24, 2003. Washington, DC, USA. 2003. p. 856–63. Yu L, Liu H. Feature selection for high dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning: August 21-24, 2003. Washington, DC, USA. 2003. p. 856–63.
17.
18.
go back to reference Lalkhen AG, McCluskey A. Clinical tests: Sensitivity and specificity. CEACCP. 2008;8(6):221–3. Lalkhen AG, McCluskey A. Clinical tests: Sensitivity and specificity. CEACCP. 2008;8(6):221–3.
19.
go back to reference van Rijsbergen CJ. Information Retrieval. London: Butterworths; 1979. van Rijsbergen CJ. Information Retrieval. London: Butterworths; 1979.
20.
go back to reference Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.CrossRefPubMed Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.CrossRefPubMed
21.
go back to reference Kendell C, Lemaire ED, Losier Y, Wilson A, Chan A, Hudgins B. A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics. J Neuroeng Rehabil. 2012;9:24.CrossRefPubMedPubMedCentral Kendell C, Lemaire ED, Losier Y, Wilson A, Chan A, Hudgins B. A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics. J Neuroeng Rehabil. 2012;9:24.CrossRefPubMedPubMedCentral
22.
go back to reference Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Stat Sci. 2001;16(2):101–33. Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Stat Sci. 2001;16(2):101–33.
23.
go back to reference Capela NA, Lemaire ED, Baddour N. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS One. 2015;10(4):e0124414.CrossRefPubMedPubMedCentral Capela NA, Lemaire ED, Baddour N. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS One. 2015;10(4):e0124414.CrossRefPubMedPubMedCentral
24.
go back to reference Howcroft J, Kofman J, Lemaire ED, McIlroy WE. Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. J Biomech. 2016;49(7):992-1001. Howcroft J, Kofman J, Lemaire ED, McIlroy WE. Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. J Biomech. 2016;49(7):992-1001.
25.
go back to reference Giansanti D, Macellari V, Maccioni G. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device. Physiol Meas. 2008;29:N11–9.CrossRefPubMed Giansanti D, Macellari V, Maccioni G. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device. Physiol Meas. 2008;29:N11–9.CrossRefPubMed
26.
go back to reference Martin FC. Falls risk factors: Assessment and management to prevent falls and fractures. Can J Aging. 2011;30:33–44.CrossRefPubMed Martin FC. Falls risk factors: Assessment and management to prevent falls and fractures. Can J Aging. 2011;30:33–44.CrossRefPubMed
27.
go back to reference Pijnappels M, van der Burg PJCE, Reeves ND, van Dieen JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 2008;102:585–92.CrossRefPubMed Pijnappels M, van der Burg PJCE, Reeves ND, van Dieen JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 2008;102:585–92.CrossRefPubMed
28.
go back to reference Giansanti D, Morelli S, Maccioni G, Constantini G. Toward the design of a wearable system for fall-risk detection in telerehabilitation. Telemed e-Health. 2009;15:296–9.CrossRef Giansanti D, Morelli S, Maccioni G, Constantini G. Toward the design of a wearable system for fall-risk detection in telerehabilitation. Telemed e-Health. 2009;15:296–9.CrossRef
29.
go back to reference Shany T, Wang K, Liu Y, Lovell NH, Redmond SJ. Review: Are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthc Technol Lett. 2015;2:79–88.CrossRefPubMedPubMedCentral Shany T, Wang K, Liu Y, Lovell NH, Redmond SJ. Review: Are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthc Technol Lett. 2015;2:79–88.CrossRefPubMedPubMedCentral
30.
go back to reference Ihlen EAF, Weiss A, Helbostad JL, Hausdorff JM. The discriminant value of phase-dependent local dynamic stability of daily life walking in older adult community-dwelling fallers and nonfallers. Biomed Res Int. 2015;2015:402596. Ihlen EAF, Weiss A, Helbostad JL, Hausdorff JM. The discriminant value of phase-dependent local dynamic stability of daily life walking in older adult community-dwelling fallers and nonfallers. Biomed Res Int. 2015;2015:402596.
31.
go back to reference Ihlen EA, Weiss A, Beck Y, Helbostad JL, Hausdorff JM. A comparison study of local dynamic stability measures of daily life walking in older adult community-dwelling fallers and non-fallers. J Biomech. 2016;49:1498–503.CrossRefPubMed Ihlen EA, Weiss A, Beck Y, Helbostad JL, Hausdorff JM. A comparison study of local dynamic stability measures of daily life walking in older adult community-dwelling fallers and non-fallers. J Biomech. 2016;49:1498–503.CrossRefPubMed
32.
go back to reference Ganea R, Paraschiv-Ionescu A, Bula C, Rochat S, Aminian K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys. 2011;33:1086–93.CrossRefPubMed Ganea R, Paraschiv-Ionescu A, Bula C, Rochat S, Aminian K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys. 2011;33:1086–93.CrossRefPubMed
33.
go back to reference Martinez-Ramirez A, Lecumberri P, Gomez M, Rodriguez-Manas L, Garcia FJ, Izquierdo M. Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech. 2011;44:2213–20.CrossRefPubMed Martinez-Ramirez A, Lecumberri P, Gomez M, Rodriguez-Manas L, Garcia FJ, Izquierdo M. Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech. 2011;44:2213–20.CrossRefPubMed
34.
go back to reference Rispens SM, van Dieen JH, van Schooten KS, Lizama LEC, Daffertshofer A, Beek PJ, Pijnappels M. Fall-related gait characteristics on the treadmill and in daily life. J Neuroeng Rehabil. 2016;13:12.CrossRefPubMedPubMedCentral Rispens SM, van Dieen JH, van Schooten KS, Lizama LEC, Daffertshofer A, Beek PJ, Pijnappels M. Fall-related gait characteristics on the treadmill and in daily life. J Neuroeng Rehabil. 2016;13:12.CrossRefPubMedPubMedCentral
35.
go back to reference Wang K, Lovell NH, Del Rosario MB, Liu Y, Wang J, Narayanan MR, Brodie MAD, Delbaere K, Menant J, Lord SR, Redmond SJ. Inertial measurements of free-living activities: Assessing mobility to predict falls. In: Proceedings of the 36th Annual Conference of IEEE EMBS: 26-30 August, 2014. Chicago, Illinois. 2014. p. 6892–5. Wang K, Lovell NH, Del Rosario MB, Liu Y, Wang J, Narayanan MR, Brodie MAD, Delbaere K, Menant J, Lord SR, Redmond SJ. Inertial measurements of free-living activities: Assessing mobility to predict falls. In: Proceedings of the 36th Annual Conference of IEEE EMBS: 26-30 August, 2014. Chicago, Illinois. 2014. p. 6892–5.
36.
go back to reference Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, Hausdorff JM. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27:742–52.CrossRefPubMed Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, Hausdorff JM. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27:742–52.CrossRefPubMed
37.
go back to reference Hauser SL, Dawson DM, Lehrich JR, Beal MF, Kevy SV, Propper RD, Mills JA, Weiner HL. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med. 1983;308:173–80.CrossRefPubMed Hauser SL, Dawson DM, Lehrich JR, Beal MF, Kevy SV, Propper RD, Mills JA, Weiner HL. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med. 1983;308:173–80.CrossRefPubMed
38.
go back to reference Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed
39.
go back to reference Stergiou N, Buzzi UH, Kurz MJ, Heidel J. Nonlinear tools in human movement. In: Stergiou N, editor. Innovative Analyses of Human Movement: Analytical Tools for Human Movement Research. Champaign: Human Kinetics; 2004. p. 63–90. Stergiou N, Buzzi UH, Kurz MJ, Heidel J. Nonlinear tools in human movement. In: Stergiou N, editor. Innovative Analyses of Human Movement: Analytical Tools for Human Movement Research. Champaign: Human Kinetics; 2004. p. 63–90.
Metadata
Title
Feature selection for elderly faller classification based on wearable sensors
Authors
Jennifer Howcroft
Jonathan Kofman
Edward D. Lemaire
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0255-9

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue