Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Multi-contact functional electrical stimulation for hand opening: electrophysiologically driven identification of the optimal stimulation site

Authors: Cristiano De Marchis, Thiago Santos Monteiro, Cristina Simon-Martinez, Silvia Conforto, Alireza Gharabaghi

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Functional Electrical Stimulation (FES) is increasingly applied in neurorehabilitation. Particularly, the use of electrode arrays may allow for selective muscle recruitment. However, detecting the best electrode configuration constitutes still a challenge.

Methods

A multi-contact set-up with thirty electrodes was applied for combined FES and electromyography (EMG) recording of the forearm. A search procedure scanned all electrode configurations by applying single, sub-threshold stimulation pulses while recording M-waves of the extensor digitorum communis (EDC), extensor carpi radialis (ECR) and extensor carpi ulnaris (ECU) muscles. The electrode contacts with the best electrophysiological response were then selected for stimulation with FES bursts while capturing finger/wrist extension and radial/ulnar deviation with a kinematic glove.

Results

The stimulation electrodes chosen on the basis of M-waves of the EDC/ECR/ECU muscles were able to effectively elicit the respective finger/wrist movements for the targeted extension and/or deviation with high specificity in two different hand postures.

Conclusions

A subset of functionally relevant stimulation electrodes could be selected fast, automatic and non-painful from a multi-contact array on the basis of muscle responses to subthreshold stimulation pulses. The selectivity of muscle recruitment predicted the kinematic pattern. This electrophysiologically driven approach would thus allow for an operator-independent positioning of the electrode array in neurorehabilitation.
Literature
1.
2.
go back to reference Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(1):36.CrossRefPubMedPubMedCentral Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(1):36.CrossRefPubMedPubMedCentral
3.
go back to reference Van der Linden ML, Hooper JE, Cowan P, Weller BB, Mercer TH. Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but Not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop. PLoS One. 2014;9(8):e103368. doi:10.1371/journal.pone.0103368.CrossRefPubMedPubMedCentral Van der Linden ML, Hooper JE, Cowan P, Weller BB, Mercer TH. Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but Not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop. PLoS One. 2014;9(8):e103368. doi:10.​1371/​journal.​pone.​0103368.CrossRefPubMedPubMedCentral
4.
go back to reference Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, Hughes AM. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with Multiple Sclerosis. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2015;4(2):1534-4320. Sampson P, Freeman C, Coote S, Demain S, Feys P, Meadmore K, Hughes AM. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with Multiple Sclerosis. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2015;4(2):1534-4320.
5.
go back to reference Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, & Mushahwar VK. Functional electrical stimulation and spinal cord injury. Physical Med Rehab Clin North Am. 2014;25(3):631–54. Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, & Mushahwar VK. Functional electrical stimulation and spinal cord injury. Physical Med Rehab Clin North Am. 2014;25(3):631–54.
6.
go back to reference Popovic DB, Sinkjær T, Popovic MB. Electrical stimulation as a means for achieving recovery of function in stroke patients. Neurorehabilitation. 2009;25:45–58.PubMed Popovic DB, Sinkjær T, Popovic MB. Electrical stimulation as a means for achieving recovery of function in stroke patients. Neurorehabilitation. 2009;25:45–58.PubMed
7.
go back to reference Dunning K, Berberich A, Albers B, Mortellite K, Levine PG, Hermann VAH, & Page SJA. A four-week, task-specific neuroprosthesis program for a person with no active wrist or finger movement because of chronic stroke. Phys Ther. 2008;88(3):397–405. Dunning K, Berberich A, Albers B, Mortellite K, Levine PG, Hermann VAH, & Page SJA. A four-week, task-specific neuroprosthesis program for a person with no active wrist or finger movement because of chronic stroke. Phys Ther. 2008;88(3):397–405.
9.
10.
go back to reference Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.CrossRefPubMed Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.CrossRefPubMed
11.
go back to reference Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair. 2007;21(3):207–15.CrossRefPubMed Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair. 2007;21(3):207–15.CrossRefPubMed
12.
go back to reference Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: a preliminary study. Am J Physical Med Rehabil. 2008;87(8):627–36.CrossRef Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: a preliminary study. Am J Physical Med Rehabil. 2008;87(8):627–36.CrossRef
13.
go back to reference Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med School. 2008;75(1):4–14.CrossRef Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med School. 2008;75(1):4–14.CrossRef
14.
go back to reference Gharib NM, Aboumousa AM, Elowishy AA, Rezk-Allah SS, Yousef FS. Efficacy of electrical stimulation as an adjunct to repetitive task practice therapy on skilled hand performance in hemiparetic stroke patients: a randomized controlled trial. Clin Rehabil. 2014;29(4):355–64.CrossRefPubMed Gharib NM, Aboumousa AM, Elowishy AA, Rezk-Allah SS, Yousef FS. Efficacy of electrical stimulation as an adjunct to repetitive task practice therapy on skilled hand performance in hemiparetic stroke patients: a randomized controlled trial. Clin Rehabil. 2014;29(4):355–64.CrossRefPubMed
16.
go back to reference Keller T, Kuhn A. Electrodes for transcutaneous (surface) electrical stimulation. J Auto Control. 2008;18:35–45.CrossRef Keller T, Kuhn A. Electrodes for transcutaneous (surface) electrical stimulation. J Auto Control. 2008;18:35–45.CrossRef
17.
go back to reference O’Dwyer SB, O’Keeffe DT, Coote S, Lyons G. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med Eng Phys. 2006;28:166–76.CrossRefPubMed O’Dwyer SB, O’Keeffe DT, Coote S, Lyons G. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med Eng Phys. 2006;28:166–76.CrossRefPubMed
18.
go back to reference Goffredo M, Schmid M, Conforto S, Bilotti F, Palma C, Vegni L, & D’Alessio T. A two-step model to optimise transcutaneous electrical stimulation of the human upper arm. COMPEL Int J Comput Math Electrical Electronic Eng. 2014;33(4):1329–45. Goffredo M, Schmid M, Conforto S, Bilotti F, Palma C, Vegni L, & D’Alessio T. A two-step model to optimise transcutaneous electrical stimulation of the human upper arm. COMPEL Int J Comput Math Electrical Electronic Eng. 2014;33(4):1329–45.
19.
go back to reference Popovic-Bijelic A, Bijelic G, Jorgovanovic N, Bojanic D, Popovic MB, Popovic DB. Multi-field surface electrode for selective electrical stimulation. Artif Organs. 2005;29:448–52.CrossRefPubMed Popovic-Bijelic A, Bijelic G, Jorgovanovic N, Bojanic D, Popovic MB, Popovic DB. Multi-field surface electrode for selective electrical stimulation. Artif Organs. 2005;29:448–52.CrossRefPubMed
20.
go back to reference Popovic LZ, Malesevic NM, Popovic MB. Optimization of multi-pad surface electrode: Selective stimulation of wrist. In: EUROCON 2009, EUROCON’09. New York City: IEEE; 2009. p. 142–5.CrossRef Popovic LZ, Malesevic NM, Popovic MB. Optimization of multi-pad surface electrode: Selective stimulation of wrist. In: EUROCON 2009, EUROCON’09. New York City: IEEE; 2009. p. 142–5.CrossRef
21.
go back to reference Malešević N, Popović L, Bijelić G, Kvaščev G. Muscle twitch responses for shaping the multi-pad electrode for functional electrical stimulation. J Auto Control. 2010;20(1):53–8.CrossRef Malešević N, Popović L, Bijelić G, Kvaščev G. Muscle twitch responses for shaping the multi-pad electrode for functional electrical stimulation. J Auto Control. 2010;20(1):53–8.CrossRef
22.
go back to reference Malešević NM, Maneski LZ, Ilić V, Jorgovanović N, Bijelić G, Keller T, & Popovid DBA. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J Neuroeng Rehabil. 2012;9:66. Malešević NM, Maneski LZ, Ilić V, Jorgovanović N, Bijelić G, Keller T, & Popovid DBA. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J Neuroeng Rehabil. 2012;9:66.
23.
go back to reference Bowden JL, McNulty PA. Mapping the motor point in the human tibialis anterior muscle. Clin Neurophysiol. 2012;123(2):386–92.CrossRefPubMed Bowden JL, McNulty PA. Mapping the motor point in the human tibialis anterior muscle. Clin Neurophysiol. 2012;123(2):386–92.CrossRefPubMed
24.
go back to reference Exell TA, Freeman CT, Meadmore KL, Hughes A-M, Hallewell E, Burridge J. Optimisation of hand posture stimulation using an electrode array and iterative learning control. J Auto Control. 2013;21:1–5.CrossRef Exell TA, Freeman CT, Meadmore KL, Hughes A-M, Hallewell E, Burridge J. Optimisation of hand posture stimulation using an electrode array and iterative learning control. J Auto Control. 2013;21:1–5.CrossRef
25.
go back to reference Gobbo M, Maffiuletti NA, Orizio C, Minetto MA. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil. 2014;11(1):17.CrossRefPubMedPubMedCentral Gobbo M, Maffiuletti NA, Orizio C, Minetto MA. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil. 2014;11(1):17.CrossRefPubMedPubMedCentral
26.
go back to reference Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.CrossRefPubMed Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.CrossRefPubMed
27.
go back to reference Okuma Y, Bergquist AJ, Hong M, Chan KM, Collins DF. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior. Clin Neurophysiol. 2013;124(11):2257–63.CrossRefPubMed Okuma Y, Bergquist AJ, Hong M, Chan KM, Collins DF. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior. Clin Neurophysiol. 2013;124(11):2257–63.CrossRefPubMed
28.
go back to reference Mezzarane RA, Elias LA, Magalhães FH, Chaud VM, Kohn AF. Experimental and simulated EMG responses in the study of the human spinal cord. Electrodiagnosis New Frontiers Clin Res. 2013;1:57–87. Mezzarane RA, Elias LA, Magalhães FH, Chaud VM, Kohn AF. Experimental and simulated EMG responses in the study of the human spinal cord. Electrodiagnosis New Frontiers Clin Res. 2013;1:57–87.
29.
go back to reference Leijnse JN, Campbell-Kyureghyan NH, Spektor D, Quesada PM. Assessment of individual finger muscle activity in the extensor digitorum communis by surface EMG. J Neurophysiol. 2008;100(6):3225–35.CrossRefPubMed Leijnse JN, Campbell-Kyureghyan NH, Spektor D, Quesada PM. Assessment of individual finger muscle activity in the extensor digitorum communis by surface EMG. J Neurophysiol. 2008;100(6):3225–35.CrossRefPubMed
30.
go back to reference Ngeo JG, Tamei T, Shibata T. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. J Neuroeng Rehabil. 2014;11(122):0003–11. Ngeo JG, Tamei T, Shibata T. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. J Neuroeng Rehabil. 2014;11(122):0003–11.
31.
go back to reference Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–60.CrossRefPubMed Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–60.CrossRefPubMed
32.
go back to reference Popovic-Maneski L, Kostic M, Bijelic G, Keller T, Mitrovic S, Konstantinovic L, & Popovic DB. Multi-pad electrode for effective grasping: design. Neural Syst Rehabil Eng IEEE Transac. 2013;21(4):648–54. Popovic-Maneski L, Kostic M, Bijelic G, Keller T, Mitrovic S, Konstantinovic L, & Popovic DB. Multi-pad electrode for effective grasping: design. Neural Syst Rehabil Eng IEEE Transac. 2013;21(4):648–54.
33.
go back to reference Freeman CT. Electrode array-based electrical stimulation using ILC with restricted input subspace. Control Eng Pract. 2014;23:32–43.CrossRef Freeman CT. Electrode array-based electrical stimulation using ILC with restricted input subspace. Control Eng Pract. 2014;23:32–43.CrossRef
34.
go back to reference Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin Neurophysiol. 2012;123(11):2247–55.CrossRefPubMedPubMedCentral Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin Neurophysiol. 2012;123(11):2247–55.CrossRefPubMedPubMedCentral
35.
go back to reference Wegrzyk J, Fouré A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, & Gondin J. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol. 2014;126(7):1400–12. Wegrzyk J, Fouré A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, & Gondin J. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol. 2014;126(7):1400–12.
36.
go back to reference Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons JF, & Farina D. Online tremor suppression using electromyography and Low level electrical stimulation. Neural Syst Rehabil Eng IEEE Transac. 2015;23(3):385–95. Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons JF, & Farina D. Online tremor suppression using electromyography and Low level electrical stimulation. Neural Syst Rehabil Eng IEEE Transac. 2015;23(3):385–95.
37.
go back to reference Rushton DN. Functional electrical stimulation and rehabilitation—an hypothesis. Med Eng Phys. 2003;25(1):75–8.CrossRefPubMed Rushton DN. Functional electrical stimulation and rehabilitation—an hypothesis. Med Eng Phys. 2003;25(1):75–8.CrossRefPubMed
38.
go back to reference Daly JJ, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther. 2009;33(4):203–11.CrossRefPubMed Daly JJ, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther. 2009;33(4):203–11.CrossRefPubMed
39.
go back to reference Spuler M, Walter A, Ramos Murguialday A, Naros G, Birbaumer N, Gharabaghi A, & Bogdan M. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J Neural Eng. 2014;11(6):066008. Spuler M, Walter A, Ramos Murguialday A, Naros G, Birbaumer N, Gharabaghi A, & Bogdan M. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J Neural Eng. 2014;11(6):066008.
40.
go back to reference Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, & Ward NS. Re-thinking the role of motor cortex: Context-sensitive motor outputs? NeuroImage. 2014;91:366–74. Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, & Ward NS. Re-thinking the role of motor cortex: Context-sensitive motor outputs? NeuroImage. 2014;91:366–74.
41.
go back to reference Fels M, Bauer R, Gharabaghi A. Predicting work load profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge? J Neural Eng. 2015;14(4):12. 046029. Fels M, Bauer R, Gharabaghi A. Predicting work load profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge? J Neural Eng. 2015;14(4):12. 046029.
42.
go back to reference Vukelić M, Gharabaghi A. (a) Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage. 2015;111:1–11.CrossRefPubMed Vukelić M, Gharabaghi A. (a) Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage. 2015;111:1–11.CrossRefPubMed
43.
go back to reference McCrimmon CM, King CE, Wang PT, Cramer SC, Nenadic Z, Do AH. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. J Neuroeng Rehabil. 2015;12(1):57.CrossRefPubMedPubMedCentral McCrimmon CM, King CE, Wang PT, Cramer SC, Nenadic Z, Do AH. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. J Neuroeng Rehabil. 2015;12(1):57.CrossRefPubMedPubMedCentral
44.
go back to reference Vukelić M, Bauer R, Naros G, Naros I, Braun C, Gharabaghi A. Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations. NeuroImage. 2014;87:147–53.CrossRefPubMed Vukelić M, Bauer R, Naros G, Naros I, Braun C, Gharabaghi A. Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations. NeuroImage. 2014;87:147–53.CrossRefPubMed
45.
go back to reference Vukelic M, Gharabaghi A. (b) Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks. Front Behv Neurosci. 2015;9:181. Vukelic M, Gharabaghi A. (b) Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks. Front Behv Neurosci. 2015;9:181.
46.
go back to reference Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain-robot interface. NeuroImage. 2014;108:319–27.CrossRefPubMed Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain-robot interface. NeuroImage. 2014;108:319–27.CrossRefPubMed
47.
go back to reference Kraus D, Naros G, Bauer R, Leão MT, Ziemann U, Gharabaghi A. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability. Neuroimage. 2016;15(125):522–32.CrossRef Kraus D, Naros G, Bauer R, Leão MT, Ziemann U, Gharabaghi A. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability. Neuroimage. 2016;15(125):522–32.CrossRef
48.
go back to reference Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil. 2002;83(12):1703–7.CrossRefPubMed Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil. 2002;83(12):1703–7.CrossRefPubMed
49.
go back to reference Triandafilou KM, Kamper DG. Investigation of hand muscle atrophy in stroke survivors. Clin Biomech. 2012;27(3):268–72.CrossRef Triandafilou KM, Kamper DG. Investigation of hand muscle atrophy in stroke survivors. Clin Biomech. 2012;27(3):268–72.CrossRef
Metadata
Title
Multi-contact functional electrical stimulation for hand opening: electrophysiologically driven identification of the optimal stimulation site
Authors
Cristiano De Marchis
Thiago Santos Monteiro
Cristina Simon-Martinez
Silvia Conforto
Alireza Gharabaghi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0129-6

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue