Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Methodology

On the analysis of movement smoothness

Authors: Sivakumar Balasubramanian, Alejandro Melendez-Calderon, Agnes Roby-Brami, Etienne Burdet

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Quantitative measures of smoothness play an important role in the assessment of sensorimotor impairment and motor learning. Traditionally, movement smoothness has been computed mainly for discrete movements, in particular arm, reaching and circle drawing, using kinematic data. There are currently very few studies investigating smoothness of rhythmic movements, and there is no systematic way of analysing the smoothness of such movements. There is also very little work on the smoothness of other movement related variables such as force, impedance etc. In this context, this paper presents the first step towards a unified framework for the analysis of smoothness of arbitrary movements and using various data. It starts with a systematic definition of movement smoothness and the different factors that influence smoothness, followed by a review of existing methods for quantifying the smoothness of discrete movements. A method is then introduced to analyse the smoothness of rhythmic movements by generalising the techniques developed for discrete movements. We finally propose recommendations for analysing smoothness of any general sensorimotor behaviour.
Appendix
Available only for authorised users
Literature
3.
4.
go back to reference Balasubramanian S, Melendez-Calderon A, Burdet E. A Robust and Sensitive Metric for Quantifying Movement Smoothness. IEEE Trans Biomed Eng. 2012; 59(8):2126–136.CrossRefPubMed Balasubramanian S, Melendez-Calderon A, Burdet E. A Robust and Sensitive Metric for Quantifying Movement Smoothness. IEEE Trans Biomed Eng. 2012; 59(8):2126–136.CrossRefPubMed
6.
go back to reference Bosecker C, Dipietro L, Volpe B, Krebs HI, Volpe L, Krebs HI, et al. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010; 24(1):62–9.CrossRefPubMed Bosecker C, Dipietro L, Volpe B, Krebs HI, Volpe L, Krebs HI, et al. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010; 24(1):62–9.CrossRefPubMed
7.
go back to reference Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic Assessment of Upper Limb Motor Function After Stroke. Am J Phys Med Rehabil. 2012; 91:255–69.CrossRef Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic Assessment of Upper Limb Motor Function After Stroke. Am J Phys Med Rehabil. 2012; 91:255–69.CrossRef
9.
go back to reference Burdet E, Franklin DW, Milner TE. Human Robotics - Neuromechanics and Motor Control: MIT Press; 2013. Burdet E, Franklin DW, Milner TE. Human Robotics - Neuromechanics and Motor Control: MIT Press; 2013.
10.
go back to reference Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, et al. CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci. 2008; 28(44):11165–73.CrossRefPubMed Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, et al. CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci. 2008; 28(44):11165–73.CrossRefPubMed
12.
go back to reference Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985; 5(7):1688–703.PubMed Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985; 5(7):1688–703.PubMed
13.
go back to reference Vaisman L, Dipietro L, Krebs HI. A comparative analysis of speed profile models for wrist pointing movements. IEEE Trans Neural Syst Rehabil Eng. 2013; 21(5):756–66.CrossRefPubMed Vaisman L, Dipietro L, Krebs HI. A comparative analysis of speed profile models for wrist pointing movements. IEEE Trans Neural Syst Rehabil Eng. 2013; 21(5):756–66.CrossRefPubMed
15.
go back to reference Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, et al. Response to upper-limb robotics and functional neuromuscular. J Rehabil Res Dev. 2005; 42(6):723.CrossRefPubMed Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, et al. Response to upper-limb robotics and functional neuromuscular. J Rehabil Res Dev. 2005; 42(6):723.CrossRefPubMed
16.
go back to reference Teo CL, Burdet E, Lim HP. A robotic teacher of Chinese handwriting. In: Proc. 10th Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. HAPTICS 2002. IEEE: 2002. p. 335–341. Teo CL, Burdet E, Lim HP. A robotic teacher of Chinese handwriting. In: Proc. 10th Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. HAPTICS 2002. IEEE: 2002. p. 335–341.
17.
go back to reference Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N. Submovement changes characterize generalization of motor recovery after stroke. Cortex. 2009; 45(3):318–24.CrossRefPubMed Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N. Submovement changes characterize generalization of motor recovery after stroke. Cortex. 2009; 45(3):318–24.CrossRefPubMed
18.
go back to reference Vikne H, Bakke ES, Liestø l K, Sandbæ k G, Vø llestad N. The smoothness of unconstrained head movements is velocity-dependent. Human movement science. 2013; 32(4):540–554.CrossRefPubMed Vikne H, Bakke ES, Liestø l K, Sandbæ k G, Vø llestad N. The smoothness of unconstrained head movements is velocity-dependent. Human movement science. 2013; 32(4):540–554.CrossRefPubMed
19.
go back to reference Yashiro K, Yamauchi T, Fujii M, Takada K. Smoothness of human jaw movement during chewing. J Dent Res. 1999; 78(10):1662–8.CrossRefPubMed Yashiro K, Yamauchi T, Fujii M, Takada K. Smoothness of human jaw movement during chewing. J Dent Res. 1999; 78(10):1662–8.CrossRefPubMed
20.
go back to reference Doeringer JA, Hogan N. Intermittency in preplanned elbow movements persists in the absence of visual feedback. J Neurophysiol. 1998; 80(4):1787–99.PubMed Doeringer JA, Hogan N. Intermittency in preplanned elbow movements persists in the absence of visual feedback. J Neurophysiol. 1998; 80(4):1787–99.PubMed
21.
go back to reference Ao D, Song R, Tong K-y. Sensorimotor Control of Tracking Movements at Various Speeds for Stroke Patients as Well as Age-Matched and Young Healthy Subjects. PLoS One. 2015; 10(6):0128328. Ao D, Song R, Tong K-y. Sensorimotor Control of Tracking Movements at Various Speeds for Stroke Patients as Well as Age-Matched and Young Healthy Subjects. PLoS One. 2015; 10(6):0128328.
22.
go back to reference Lambercy O, Dovat L, Yun H, Wee SK, Kuah CWK, Chua KSG, et al. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011; 8(1):63.PubMedCentralPubMed Lambercy O, Dovat L, Yun H, Wee SK, Kuah CWK, Chua KSG, et al. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011; 8(1):63.PubMedCentralPubMed
23.
go back to reference Celik O, O’Malley MK, Boake C, Levin HS, Yozbatiran N, Reistetter TA. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng. 2010; 18(4):433–44.CrossRefPubMed Celik O, O’Malley MK, Boake C, Levin HS, Yozbatiran N, Reistetter TA. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng. 2010; 18(4):433–44.CrossRefPubMed
24.
go back to reference Brach JS, McGurl D, Wert D, VanSwearingen JM, Perera S, Cham R, et al. Validation of a Measure of Smoothness of Walking. Journals Gerontol Ser A Biol Sci Med Sci. 2011; 66A(1):136–41.CrossRef Brach JS, McGurl D, Wert D, VanSwearingen JM, Perera S, Cham R, et al. Validation of a Measure of Smoothness of Walking. Journals Gerontol Ser A Biol Sci Med Sci. 2011; 66A(1):136–41.CrossRef
25.
go back to reference Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people. Journals Gerontol Ser A Biol Sci Med Sci. 2003; 58(5):446–52.CrossRef Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people. Journals Gerontol Ser A Biol Sci Med Sci. 2003; 58(5):446–52.CrossRef
26.
go back to reference Lowry KA, VanSwearingen JM, Perera S, Studenski SA, Brach JS. Walking smoothness is associated with self-reported function after accounting for gait speed. Journals Gerontol Ser A Biol Sci Med Sci. 2013;:glt034. Lowry KA, VanSwearingen JM, Perera S, Studenski SA, Brach JS. Walking smoothness is associated with self-reported function after accounting for gait speed. Journals Gerontol Ser A Biol Sci Med Sci. 2013;:glt034.
27.
go back to reference Hreljac A. The relationship between smoothness and performance during the practice of a lower limb obstacle avoidance task. Biol Cybern. 1993; 68(4):375–9.CrossRefPubMed Hreljac A. The relationship between smoothness and performance during the practice of a lower limb obstacle avoidance task. Biol Cybern. 1993; 68(4):375–9.CrossRefPubMed
28.
go back to reference Hogan N, Sternad D. On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res. 2007; 181(1):13–30.CrossRefPubMed Hogan N, Sternad D. On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res. 2007; 181(1):13–30.CrossRefPubMed
29.
go back to reference Bellanca JL, Lowry KA, VanSwearingen JM, Brach JS, Redfern MS. Harmonic ratios: a quantification of step to step symmetry. J Biomech. 2013; 46(4):828–31.CrossRefPubMed Bellanca JL, Lowry KA, VanSwearingen JM, Brach JS, Redfern MS. Harmonic ratios: a quantification of step to step symmetry. J Biomech. 2013; 46(4):828–31.CrossRefPubMed
30.
go back to reference Nasseroleslami B, Hasson CJ, Sternad D. Rhythmic manipulation of objects with complex dynamics: predictability over chaos. PLoS Comput Biol. 2014; 10(10):1003900.CrossRef Nasseroleslami B, Hasson CJ, Sternad D. Rhythmic manipulation of objects with complex dynamics: predictability over chaos. PLoS Comput Biol. 2014; 10(10):1003900.CrossRef
31.
go back to reference Milner TE. A model for the generation of movements requiring endpoint precision. Neuroscience. 1992; 49(2):487–96.CrossRefPubMed Milner TE. A model for the generation of movements requiring endpoint precision. Neuroscience. 1992; 49(2):487–96.CrossRefPubMed
32.
go back to reference Burdet E, Milner TE. Quantization of human motions and learning of accurate movements. Biol Cybern. 1998; 78(4):307–18.CrossRefPubMed Burdet E, Milner TE. Quantization of human motions and learning of accurate movements. Biol Cybern. 1998; 78(4):307–18.CrossRefPubMed
33.
go back to reference Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M. Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med. 2009; 41(12):966–70.CrossRefPubMed Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M. Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med. 2009; 41(12):966–70.CrossRefPubMed
34.
go back to reference Tresilian J. Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain. 1997; 120(11):2093–111.CrossRefPubMed Tresilian J. Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain. 1997; 120(11):2093–111.CrossRefPubMed
35.
go back to reference Rand M. Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia. 2000; 38(2):203–12.CrossRefPubMed Rand M. Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia. 2000; 38(2):203–12.CrossRefPubMed
36.
go back to reference Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002; 22(18):8297–8304.PubMed Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002; 22(18):8297–8304.PubMed
37.
go back to reference Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006; 117(8):1641–59.CrossRefPubMed Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006; 117(8):1641–59.CrossRefPubMed
38.
go back to reference Portney LG, Watkins MP. Foundations of clinical research: application to practice. In: Critical Care Medicine, vol. 36. Prentice Hall Upper Saddle River, NJ: 2009. p. 892. Portney LG, Watkins MP. Foundations of clinical research: application to practice. In: Critical Care Medicine, vol. 36. Prentice Hall Upper Saddle River, NJ: 2009. p. 892.
39.
go back to reference Rohrer B, Hogan N. Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern. 2003; 89(3):190–9.CrossRefPubMed Rohrer B, Hogan N. Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern. 2003; 89(3):190–9.CrossRefPubMed
40.
go back to reference Rohrer B, Hogan N. Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol Cybern. 2006; 94(5):409–14.CrossRefPubMed Rohrer B, Hogan N. Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol Cybern. 2006; 94(5):409–14.CrossRefPubMed
41.
go back to reference Pérez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007; 9(3):21–9.CrossRef Pérez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007; 9(3):21–9.CrossRef
42.
go back to reference Knorr B, Hughes R, Sherrill D, Stein J, Akay M, Bonato P. Quantitative measures of functional upper limb movement in persons after stroke. In: Conf. Proceedings. 2nd Int. IEEE EMBS Conf. Neural Eng. 2005, vol. 2005. IEEE: 2005. p. 252–255. Knorr B, Hughes R, Sherrill D, Stein J, Akay M, Bonato P. Quantitative measures of functional upper limb movement in persons after stroke. In: Conf. Proceedings. 2nd Int. IEEE EMBS Conf. Neural Eng. 2005, vol. 2005. IEEE: 2005. p. 252–255.
Metadata
Title
On the analysis of movement smoothness
Authors
Sivakumar Balasubramanian
Alejandro Melendez-Calderon
Agnes Roby-Brami
Etienne Burdet
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0090-9

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue