Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Review

Haptic wearables as sensory replacement, sensory augmentation and trainer – a review

Authors: Peter B. Shull, Dana D. Damian

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.
Literature
1.
go back to reference Kusoffsky A, Wadell I, Nilsson L. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 1982;14:27–32.PubMed Kusoffsky A, Wadell I, Nilsson L. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 1982;14:27–32.PubMed
2.
go back to reference Stern PH, Mcdowell F, Miller JM, Robinson M. Factors influencing stroke rehabilitation. Stroke. 1971;2:213–8.PubMed Stern PH, Mcdowell F, Miller JM, Robinson M. Factors influencing stroke rehabilitation. Stroke. 1971;2:213–8.PubMed
3.
go back to reference Lindenberger U, Ghisletta P: Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychol Aging. 2009; 24:1-16. Lindenberger U, Ghisletta P: Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychol Aging. 2009; 24:1-16.
4.
go back to reference Geldard F. Adventures in tactile literacy. Am Psychol. 1957;12:115–24. Geldard F. Adventures in tactile literacy. Am Psychol. 1957;12:115–24.
5.
go back to reference Jones LA, Sarter NB. Tactile Displays: Guidance for Their Design and Application. Hum Factors J Hum Factors Ergon Soc. 2008;50:90–111. Jones LA, Sarter NB. Tactile Displays: Guidance for Their Design and Application. Hum Factors J Hum Factors Ergon Soc. 2008;50:90–111.
6.
go back to reference Bark K, Wheeler J, Shull PB, Savall J, Cutkosky M. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans Haptics. 2010;3:166–76. Bark K, Wheeler J, Shull PB, Savall J, Cutkosky M. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans Haptics. 2010;3:166–76.
7.
go back to reference Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10:45–54.PubMed Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10:45–54.PubMed
8.
go back to reference Lieberman J, Breazeal C. TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans Robot. 2007;23:919–26. Lieberman J, Breazeal C. TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans Robot. 2007;23:919–26.
9.
go back to reference Kapur P, Jensen M, Buxbaum LJ, Jax SA., Kuchenbecker KJ: Spatially distributed tactile feedback for kinesthetic motion guidance. In 2010 IEEE Haptics Symp. Proc. IEEE; 2010;519–526. Kapur P, Jensen M, Buxbaum LJ, Jax SA., Kuchenbecker KJ: Spatially distributed tactile feedback for kinesthetic motion guidance. In 2010 IEEE Haptics Symp. Proc. IEEE; 2010;519–526.
10.
go back to reference Wall C, Kentala E. Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. J Vestib Res Equilib Orientat. 2010;20:61–9. Wall C, Kentala E. Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. J Vestib Res Equilib Orientat. 2010;20:61–9.
11.
go back to reference Bächlin M, Förster K, Tröster G. SwimMaster: A Wearable Assistant for Swimmer. In: Proc 11th Int Conf Ubiquitous Comput - Ubicomp ’09. New York, New York, USA: ACM Press; 2009. p. 21. Bächlin M, Förster K, Tröster G. SwimMaster: A Wearable Assistant for Swimmer. In: Proc 11th Int Conf Ubiquitous Comput - Ubicomp ’09. New York, New York, USA: ACM Press; 2009. p. 21.
12.
go back to reference Förster K, Bächlin M, Tröster G. Non-interrupting user Interfaces for Electronic Body-worn Swim Devices. In: Proc 2nd Int Conf PErvsive Technol Relat to Assist Environ - PETRA ’09. New York, New York, USA: ACM Press; 2009. p. 1–4. Förster K, Bächlin M, Tröster G. Non-interrupting user Interfaces for Electronic Body-worn Swim Devices. In: Proc 2nd Int Conf PErvsive Technol Relat to Assist Environ - PETRA ’09. New York, New York, USA: ACM Press; 2009. p. 1–4.
13.
go back to reference Shull PB, Lurie K, Cutkosky MR, Besier T. Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J Biomech. 2011;44:1605–9.PubMed Shull PB, Lurie K, Cutkosky MR, Besier T. Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J Biomech. 2011;44:1605–9.PubMed
14.
go back to reference Lee B-C, Chen S, Sienko KH. A wearable device for real-time motion error detection and vibrotactile instructional cuing. IEEE Trans Neural Syst Rehabil Eng. 2011;19:374–81.PubMed Lee B-C, Chen S, Sienko KH. A wearable device for real-time motion error detection and vibrotactile instructional cuing. IEEE Trans Neural Syst Rehabil Eng. 2011;19:374–81.PubMed
15.
go back to reference Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21.PubMedCentralPubMed Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21.PubMedCentralPubMed
16.
go back to reference Steins D, Dawes H, Esser P, Collett J. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil. 2014;11:1–13. Steins D, Dawes H, Esser P, Collett J. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil. 2014;11:1–13.
17.
go back to reference Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40:11–9.PubMed Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40:11–9.PubMed
18.
go back to reference Bach-y-Rita PW, Kercel S. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2003;7:541–6.PubMed Bach-y-Rita PW, Kercel S. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2003;7:541–6.PubMed
19.
go back to reference Dozza M, Wall C, Peterka RJ, Chiari L, Horak FB. Effects of practicing tandem gait with and without vibrotactile biofeedback in subjects with unilateral vestibular loss. J Vestib Res. 2007;17:195–204.PubMedCentralPubMed Dozza M, Wall C, Peterka RJ, Chiari L, Horak FB. Effects of practicing tandem gait with and without vibrotactile biofeedback in subjects with unilateral vestibular loss. J Vestib Res. 2007;17:195–204.PubMedCentralPubMed
20.
go back to reference Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.PubMed Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.PubMed
21.
go back to reference Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9:17.PubMedCentralPubMed Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9:17.PubMedCentralPubMed
22.
go back to reference Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J Rehabil Res Dev. 2011;48:387.PubMed Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J Rehabil Res Dev. 2011;48:387.PubMed
23.
go back to reference Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31:236–57.PubMed Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31:236–57.PubMed
24.
go back to reference Pylatiuk C, Schulz S, Döderlein L. Results of an Internet survey of myoelectric prosthetic hand users. Prosthet Orthot Int. 2007;31:362–70.PubMed Pylatiuk C, Schulz S, Döderlein L. Results of an Internet survey of myoelectric prosthetic hand users. Prosthet Orthot Int. 2007;31:362–70.PubMed
25.
go back to reference Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2:346–57.PubMed Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2:346–57.PubMed
26.
go back to reference Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P. Prosthesis rejection in acquired major upper-limb amputees: a population-based survey. Disabil Rehabil Assist Technol. 2014;7:1–2. Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P. Prosthesis rejection in acquired major upper-limb amputees: a population-based survey. Disabil Rehabil Assist Technol. 2014;7:1–2.
27.
go back to reference Lewis S, Russold MF, Dietl H: User demands for sensory feedback in upper extremity prostheses. In 2012 IEEE International Symp. on Medical Meas. and Appl. Proceedings (MeMeA). IEEE; 2012;1–4. Lewis S, Russold MF, Dietl H: User demands for sensory feedback in upper extremity prostheses. In 2012 IEEE International Symp. on Medical Meas. and Appl. Proceedings (MeMeA). IEEE; 2012;1–4.
28.
go back to reference Peerdeman B, Boere D, Witteveen H, Huis in 'tVeld R, Hermens H, Stramigioli S, et al. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J Rehabil Res Dev. 2011;48:719.PubMed Peerdeman B, Boere D, Witteveen H, Huis in 'tVeld R, Hermens H, Stramigioli S, et al. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J Rehabil Res Dev. 2011;48:719.PubMed
29.
go back to reference Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthetics Orthot. 1996;8:1–11. Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthetics Orthot. 1996;8:1–11.
30.
go back to reference Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8:60.PubMedCentralPubMed Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8:60.PubMedCentralPubMed
31.
go back to reference Hernandez Arieta A, Dermitzakis K, Damian D, Lungarella M, Pfeifer R: Sensorymotor coupling in rehabilitation robotics. In Serv Robot Appl. Edited by Yoshihiko Takahashi (Ed.). INTECH Open Access Publisher, 2008;21–36. Hernandez Arieta A, Dermitzakis K, Damian D, Lungarella M, Pfeifer R: Sensorymotor coupling in rehabilitation robotics. In Serv Robot Appl. Edited by Yoshihiko Takahashi (Ed.). INTECH Open Access Publisher, 2008;21–36.
32.
go back to reference Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev. 1989;26:53–62.PubMed Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev. 1989;26:53–62.PubMed
33.
go back to reference Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev. 1992;29:1.PubMed Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev. 1992;29:1.PubMed
34.
go back to reference Antfolk C, Balkenius C, Lundborg G, Rosén B, Sebelius F. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. Biomed Eng Online. 2010;9:50.PubMedCentralPubMed Antfolk C, Balkenius C, Lundborg G, Rosén B, Sebelius F. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. Biomed Eng Online. 2010;9:50.PubMedCentralPubMed
35.
go back to reference Antfolk C, Alonzo MD, Controzzi M, Lundborg G, Rosén B, Sebelius F, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21:112–20.PubMed Antfolk C, Alonzo MD, Controzzi M, Lundborg G, Rosén B, Sebelius F, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21:112–20.PubMed
36.
go back to reference Jiang L, Cutkosky M, Ruutiainen J, Raisamo R. Using haptic feedback to improve grasp force control in multiple sclerosis patients. IEEE Trans Robot. 2009;25:593–601. Jiang L, Cutkosky M, Ruutiainen J, Raisamo R. Using haptic feedback to improve grasp force control in multiple sclerosis patients. IEEE Trans Robot. 2009;25:593–601.
37.
go back to reference Brown JD, Paek A, Syed M, O’Malley MK, Shewokis PA, Contreras-Vidal JL, Davis AJ, Gillespie RB: Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. World Haptics Conf 2013:271–276. Brown JD, Paek A, Syed M, O’Malley MK, Shewokis PA, Contreras-Vidal JL, Davis AJ, Gillespie RB: Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. World Haptics Conf 2013:271–276.
38.
go back to reference Tejeiro C, Stepp CE, Malhotra M, Rombokas E, Matsuoka Y: Comparison of remote pressure and vibrotactile feedback for prosthetic hand control. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012;521–525 Tejeiro C, Stepp CE, Malhotra M, Rombokas E, Matsuoka Y: Comparison of remote pressure and vibrotactile feedback for prosthetic hand control. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012;521–525
39.
go back to reference Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60:2226–32.PubMed Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60:2226–32.PubMed
40.
go back to reference Augurelle A-S, Smith AM, Lejeune T, Thonnard J-L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol. 2003;89:665–71.PubMed Augurelle A-S, Smith AM, Lejeune T, Thonnard J-L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol. 2003;89:665–71.PubMed
41.
go back to reference Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Reseash. 1984;56:550–64. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Reseash. 1984;56:550–64.
42.
go back to reference Johansson RS, Cole KJ. Grasp stability during manipulative actions. Can J Physiol Pharmacol. 1994;72:511–24.PubMed Johansson RS, Cole KJ. Grasp stability during manipulative actions. Can J Physiol Pharmacol. 1994;72:511–24.PubMed
43.
go back to reference Tsagarakis NG, Horne T, Caldwell DG: Slip aestheasis: A portable 2D slip/skin stretch display for the fingertip. First Jt Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoperator Syst 2005:214–219 Tsagarakis NG, Horne T, Caldwell DG: Slip aestheasis: A portable 2D slip/skin stretch display for the fingertip. First Jt Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoperator Syst 2005:214–219
44.
go back to reference Walker JM, Blank AA, Shewokis PA, O’Malley MK. Tactile feedback of object slip improves performance in a grasp and hold task. IEEE Haptics Symp. 2014;2014:461–6. Walker JM, Blank AA, Shewokis PA, O’Malley MK. Tactile feedback of object slip improves performance in a grasp and hold task. IEEE Haptics Symp. 2014;2014:461–6.
45.
go back to reference Webster RJ, Murphy TE, Verner LN, Okamura AM. A novel two-dimensional tactile slip display: design, kinematics and perceptual experiments. ACM Trans Appl Percept. 2005;2:150–65. Webster RJ, Murphy TE, Verner LN, Okamura AM. A novel two-dimensional tactile slip display: design, kinematics and perceptual experiments. ACM Trans Appl Percept. 2005;2:150–65.
46.
go back to reference Damian DD, Arita AH, Martinez H, Pfeifer R. Slip speed feedback for grip force control. IEEE Trans Biomed Eng. 2012;59:2200–10.PubMed Damian DD, Arita AH, Martinez H, Pfeifer R. Slip speed feedback for grip force control. IEEE Trans Biomed Eng. 2012;59:2200–10.PubMed
47.
go back to reference Kim K, Member A, Colgate JE, Santos-munn JJ, Makhlin A, Peshkin MA. On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans on Mechatronics. 2010;15:27–39. Kim K, Member A, Colgate JE, Santos-munn JJ, Makhlin A, Peshkin MA. On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans on Mechatronics. 2010;15:27–39.
48.
go back to reference Damian DD, Ludersdorfer M, Kim Y, Hernandez Arieta A, Pfeifer R, Okamura AM. Wearable haptic device for cutaneous force and slip speed display. IEEE Int Conf Robot Autom. 2012;2012:1038–43. Damian DD, Ludersdorfer M, Kim Y, Hernandez Arieta A, Pfeifer R, Okamura AM. Wearable haptic device for cutaneous force and slip speed display. IEEE Int Conf Robot Autom. 2012;2012:1038–43.
49.
go back to reference Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J. Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev. 1998;35:427–30.PubMed Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J. Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev. 1998;35:427–30.PubMed
50.
go back to reference Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng. 2009;17:560–7.PubMed Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng. 2009;17:560–7.PubMed
51.
go back to reference Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans neural Syst Rehabil Eng. 2010;18:58–66.PubMed Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans neural Syst Rehabil Eng. 2010;18:58–66.PubMed
52.
go back to reference Seps M, Dermitzakis K, Hernandez-arieta A: Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In 2011 IEEE/RSJ Int Conf Intell Robot Syst; 2011:3454–3459. Seps M, Dermitzakis K, Hernandez-arieta A: Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In 2011 IEEE/RSJ Int Conf Intell Robot Syst; 2011:3454–3459.
53.
go back to reference Brown JD, Gillespie RB, Gardner D, Gansallo E a. Co-location of force and action improves identification of force-displacement features. 2012 IEEE Haptics Symp 2012:187–193. Brown JD, Gillespie RB, Gardner D, Gansallo E a. Co-location of force and action improves identification of force-displacement features. 2012 IEEE Haptics Symp 2012:187–193.
54.
go back to reference Van Der Riet D, Stopforth R, Bright G, Diegel O: Simultaneous vibrotactile feedback for multisensory upper limb prosthetics. Proc - 2013 6th Robot Mechatronics Conf RobMech 2013 2013:64–69. Van Der Riet D, Stopforth R, Bright G, Diegel O: Simultaneous vibrotactile feedback for multisensory upper limb prosthetics. Proc - 2013 6th Robot Mechatronics Conf RobMech 2013 2013:64–69.
55.
go back to reference Stepp CE, Matsuoka Y. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2011;19:677–85.PubMedCentralPubMed Stepp CE, Matsuoka Y. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2011;19:677–85.PubMedCentralPubMed
56.
go back to reference Blank A, Okamura AM, Kuchenbecker KJ: Identifying the role of proprioception in upperlimb prosthesis control: Studies on targeted motion. ACM Transactions on Applied Perception. 2010;7(3), Article #15:1–19. Blank A, Okamura AM, Kuchenbecker KJ: Identifying the role of proprioception in upperlimb prosthesis control: Studies on targeted motion. ACM Transactions on Applied Perception. 2010;7(3), Article #15:1–19.
57.
go back to reference Gurari N, Kuchenbecker KJ, Okamura AM. Perception of springs with visual and proprioceptive motion cues: Implications for prosthetics. IEEE Trans Human-Machine Syst. 2013;43:102–14. Gurari N, Kuchenbecker KJ, Okamura AM. Perception of springs with visual and proprioceptive motion cues: Implications for prosthetics. IEEE Trans Human-Machine Syst. 2013;43:102–14.
58.
go back to reference Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59:2219–26.PubMed Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59:2219–26.PubMed
59.
go back to reference Blank A, Okamura M, Whitcomb LL. Task-dependent impedance and implications for upper-limb prosthesis control. Int J Rob Res. 2014;33:827–46. Blank A, Okamura M, Whitcomb LL. Task-dependent impedance and implications for upper-limb prosthesis control. Int J Rob Res. 2014;33:827–46.
60.
go back to reference Blank A, Okamura AM, Whitcomb LL: User comprehension of task performance with varying impedance in a virtual prosthetic arm: A pilot study. 4th IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012:500–507. Blank A, Okamura AM, Whitcomb LL: User comprehension of task performance with varying impedance in a virtual prosthetic arm: A pilot study. 4th IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012:500–507.
61.
go back to reference Schorr SB, Quek ZF, Romano RY, Nisky I, Provancher WR, Okamura AM: Sensory substitution via cutaneous skin stretch feedback. In 2013 IEEE Int Conf Robot Autom; 2013:2341–2346. Schorr SB, Quek ZF, Romano RY, Nisky I, Provancher WR, Okamura AM: Sensory substitution via cutaneous skin stretch feedback. In 2013 IEEE Int Conf Robot Autom; 2013:2341–2346.
62.
go back to reference Martin J, Pollock A, Hettinger J. Microprocessor lower limb prosthetics: Review of current state of the art. J Orthotists annd Prosthetists. 2010;22:183–93. Martin J, Pollock A, Hettinger J. Microprocessor lower limb prosthetics: Review of current state of the art. J Orthotists annd Prosthetists. 2010;22:183–93.
63.
go back to reference Gailey R. Rehabilitation of a traumatic lower limb amputee. Physiother Res Int. 2006;3:4–7. Gailey R. Rehabilitation of a traumatic lower limb amputee. Physiother Res Int. 2006;3:4–7.
64.
go back to reference Lamoth CJC, Ainsworth E, Polomski W, Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med Eng Phys. 2010;32:1009–14.PubMed Lamoth CJC, Ainsworth E, Polomski W, Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med Eng Phys. 2010;32:1009–14.PubMed
65.
go back to reference Wentink E, Talsma-Kerkdijk E, Rietman H, Veltink P: Feasibility of error-based electrotactile and auditive feedback in prosthetic walking. Prosthet Orthot Int. 2015;39:255-259. Wentink E, Talsma-Kerkdijk E, Rietman H, Veltink P: Feasibility of error-based electrotactile and auditive feedback in prosthetic walking. Prosthet Orthot Int. 2015;39:255-259.
66.
go back to reference Fan RE, Culjat MO, King C-H, Franco ML, Boryk R, Bisley JW, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans neural Syst Rehabil Eng. 2008;16:270–7.PubMed Fan RE, Culjat MO, King C-H, Franco ML, Boryk R, Bisley JW, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans neural Syst Rehabil Eng. 2008;16:270–7.PubMed
67.
go back to reference Crea S, Cipriani C, Donati M, Carrozza M, Vitiello N: Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation. IEEE Trans Neural Syst Rehabil Eng. 2015;23:250-257. Crea S, Cipriani C, Donati M, Carrozza M, Vitiello N: Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation. IEEE Trans Neural Syst Rehabil Eng. 2015;23:250-257.
68.
go back to reference Rusaw D, Hagberg K, Nolan L, Ramstrand N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J Rehabil Res Dev. 2012;49:1239–54.PubMed Rusaw D, Hagberg K, Nolan L, Ramstrand N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J Rehabil Res Dev. 2012;49:1239–54.PubMed
69.
go back to reference Buma DG, Buitenweg JR, Veltink PH. Intermittent stimulation delays adaptation to electrocutaneous sensory feedback. IEEE Trans Neural Rehabil Eng. 2007;15:435–41. Buma DG, Buitenweg JR, Veltink PH. Intermittent stimulation delays adaptation to electrocutaneous sensory feedback. IEEE Trans Neural Rehabil Eng. 2007;15:435–41.
70.
go back to reference Sharma A, Torres-moreno R, Zabjek K, Andrysek J. Toward an artificial sensory feedback system for prosthetic mobility rehabilitation: Examination of sensorimotor responses. J Rehabil Res Dev. 2014;51:907–18.PubMed Sharma A, Torres-moreno R, Zabjek K, Andrysek J. Toward an artificial sensory feedback system for prosthetic mobility rehabilitation: Examination of sensorimotor responses. J Rehabil Res Dev. 2014;51:907–18.PubMed
71.
go back to reference Bach-y-Rita P, Collins C, Saunders F, White B, Scadden L. Vision substitution by tactile image projection. Nature. 1969;221:963–4.PubMed Bach-y-Rita P, Collins C, Saunders F, White B, Scadden L. Vision substitution by tactile image projection. Nature. 1969;221:963–4.PubMed
72.
go back to reference Velazquez R. Wearable assistive devices for the blind. Wearable Auton Biomed Devices Syst Smart Environ. 2010;75:331–49. Velazquez R. Wearable assistive devices for the blind. Wearable Auton Biomed Devices Syst Smart Environ. 2010;75:331–49.
73.
go back to reference Dakopoulos D, Bourbakis NG. Wearable obstacle avoidance electronic travel aids for blind: A survey. IEEE Trans Syst Man Cybern. 2010;40:25–35. Dakopoulos D, Bourbakis NG. Wearable obstacle avoidance electronic travel aids for blind: A survey. IEEE Trans Syst Man Cybern. 2010;40:25–35.
74.
go back to reference Mcdaniel T, Krishna S, Balasubramanian V, Colbry D, Panchanathan S: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. In HAVE Haptic Audio Vis Environ their Appl; 2008:1–6. Mcdaniel T, Krishna S, Balasubramanian V, Colbry D, Panchanathan S: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. In HAVE Haptic Audio Vis Environ their Appl; 2008:1–6.
75.
go back to reference Kärcher SM, Fenzlaff S, Hartmann D, Nagel SK, König P. Sensory augmentation for the blind. Front Hum Neurosci. 2012;6:1–15. Kärcher SM, Fenzlaff S, Hartmann D, Nagel SK, König P. Sensory augmentation for the blind. Front Hum Neurosci. 2012;6:1–15.
76.
go back to reference Johnson L, Higgins CM. A navigation aid for the blind using tactile-visual sensory substitution. IEEE Eng Med Biol Conf. 2006;1:6289–92. Johnson L, Higgins CM. A navigation aid for the blind using tactile-visual sensory substitution. IEEE Eng Med Biol Conf. 2006;1:6289–92.
77.
go back to reference Tsukada K, Yasumura M: ActiveBelt: Belt-type wearable tactile display. UbiComp; 2004:384–399. Tsukada K, Yasumura M: ActiveBelt: Belt-type wearable tactile display. UbiComp; 2004:384–399.
78.
go back to reference Van Erp JBF, van Veen HAHC, Jansen C, Dobbins T. Waypoint navigation with a vibrotactile waist belt. ACM Trans Appl Percept. 2005;2:106–17. Van Erp JBF, van Veen HAHC, Jansen C, Dobbins T. Waypoint navigation with a vibrotactile waist belt. ACM Trans Appl Percept. 2005;2:106–17.
79.
go back to reference Elliott LR, van Erp JBF, Redden ES, Duistermaat M. Field-based validation of a tactile navigation device. IEEE Trans Haptics. 2010;3:1–10. Elliott LR, van Erp JBF, Redden ES, Duistermaat M. Field-based validation of a tactile navigation device. IEEE Trans Haptics. 2010;3:1–10.
80.
go back to reference Amemiya T, Yamashita J, Hirota K, Michitaka H: Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. IEEE Virtual Real; 2004:165–173 Amemiya T, Yamashita J, Hirota K, Michitaka H: Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. IEEE Virtual Real; 2004:165–173
81.
go back to reference Meers S, Ward K: A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation. Int Conf Sens Technol; 2005:551–556 Meers S, Ward K: A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation. Int Conf Sens Technol; 2005:551–556
82.
go back to reference Koo IM, Jung K, Koo JC, Nam J, Lee YK. Development of soft-actuator-based wearable tactile display. IEEE Trans Robot. 2008;24:549–58. Koo IM, Jung K, Koo JC, Nam J, Lee YK. Development of soft-actuator-based wearable tactile display. IEEE Trans Robot. 2008;24:549–58.
83.
go back to reference Shah C, Bouzit M, Youssef M, Vasquez L: Evaluation of RU-Netra - tactile feedback navigation system for the visually impaired. Int Work Virtual Rehabil; 2006:72–77 Shah C, Bouzit M, Youssef M, Vasquez L: Evaluation of RU-Netra - tactile feedback navigation system for the visually impaired. Int Work Virtual Rehabil; 2006:72–77
84.
go back to reference Ito K, Okamoto M, Akita J, Ono T, Gyobu I, Takagi T: CyARM: an alternative aid device for blind persons.CHI; 2005:1483–1486. Ito K, Okamoto M, Akita J, Ono T, Gyobu I, Takagi T: CyARM: an alternative aid device for blind persons.CHI; 2005:1483–1486.
85.
go back to reference Gallo S, Chapuis D, Santos-Carreras L, Kim Y, Retornaz P, Bleuler H, Gassert R: Augmented white cane with multimodal haptic feedback. 3rd IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2010:149–155. Gallo S, Chapuis D, Santos-Carreras L, Kim Y, Retornaz P, Bleuler H, Gassert R: Augmented white cane with multimodal haptic feedback. 3rd IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2010:149–155.
86.
go back to reference Tang H, Beebe DJ. An oral tactile interface for blind navigation. IEEE Trans Neural Syst Rehabil Eng. 2006;14:116–23.PubMed Tang H, Beebe DJ. An oral tactile interface for blind navigation. IEEE Trans Neural Syst Rehabil Eng. 2006;14:116–23.PubMed
87.
go back to reference Jones LA, Lockyer B, Piateski E. Tactile display and vibrotactile pattern recognition on the torso. Adv Robot. 2006;20:1359–74. Jones LA, Lockyer B, Piateski E. Tactile display and vibrotactile pattern recognition on the torso. Adv Robot. 2006;20:1359–74.
88.
go back to reference Mann S, Huang J, Janzen R, Lo R, Rampersad V, Chen A, et al. Blind navigation with a wearable range camera and vibrotactile helmet. In: ACM Int Conf Multimed. New York, New York, USA: ACM Press; 2011. p. 1325–8. Mann S, Huang J, Janzen R, Lo R, Rampersad V, Chen A, et al. Blind navigation with a wearable range camera and vibrotactile helmet. In: ACM Int Conf Multimed. New York, New York, USA: ACM Press; 2011. p. 1325–8.
89.
go back to reference Velazquez R, Bazan O. Preliminary evaluation of podotactile feedback in sighted and blind users. IEEE Eng Med Biol Soc Conf. 2010;2010:2103–6. Velazquez R, Bazan O. Preliminary evaluation of podotactile feedback in sighted and blind users. IEEE Eng Med Biol Soc Conf. 2010;2010:2103–6.
90.
go back to reference Menelas BJ, Otis MJ: Design of a serious game for learning vibrotactile messages. IEEE Haptic Audio Vis Environ Games; 2012:124–129. Menelas BJ, Otis MJ: Design of a serious game for learning vibrotactile messages. IEEE Haptic Audio Vis Environ Games; 2012:124–129.
91.
go back to reference Kaczmarek K. Sensory Augmentation and Substitution. In: Bronzino EJD, editor. Biomed Eng Handb. 2nd ed. Boca Raton: CRC Press LLC; 2000. Kaczmarek K. Sensory Augmentation and Substitution. In: Bronzino EJD, editor. Biomed Eng Handb. 2nd ed. Boca Raton: CRC Press LLC; 2000.
92.
go back to reference Rosen SM, Fourcin AJ, Moore BC. Voice pitch as an aid to lipreading. Nature. 1981;291:150–2.PubMed Rosen SM, Fourcin AJ, Moore BC. Voice pitch as an aid to lipreading. Nature. 1981;291:150–2.PubMed
93.
go back to reference Saunders FA, Hill WA, Franklin B. A wearable tactile sensory aid for profoundly deaf children. J Med Syst. 1981;5:265–70.PubMed Saunders FA, Hill WA, Franklin B. A wearable tactile sensory aid for profoundly deaf children. J Med Syst. 1981;5:265–70.PubMed
94.
go back to reference Boothroyd A. A wearable tactile intonation display for the deaf. IEEE Trans Acoust. 1985;33:111–7. Boothroyd A. A wearable tactile intonation display for the deaf. IEEE Trans Acoust. 1985;33:111–7.
95.
go back to reference Weisenberger JM, Broadstone SM, Saunders FA. Evaluation of two multichannel tactile aids for the hearing impaired. J Acoust Soc Am. 1989;86:1764–75.PubMed Weisenberger JM, Broadstone SM, Saunders FA. Evaluation of two multichannel tactile aids for the hearing impaired. J Acoust Soc Am. 1989;86:1764–75.PubMed
96.
go back to reference Bernstein LE, Demorest ME, Coulter DC, O’Connell M. Lipreading sentences with vibrotactile vocoders: Performance of normal-hearing and hearing-impaired subjects. J Acoust Soc Am. 1991;90:2971–84.PubMed Bernstein LE, Demorest ME, Coulter DC, O’Connell M. Lipreading sentences with vibrotactile vocoders: Performance of normal-hearing and hearing-impaired subjects. J Acoust Soc Am. 1991;90:2971–84.PubMed
97.
go back to reference Reed CM, Delhorne LA. The reception of environmental sounds through wearable tactual Aids. Ear Hear. 2003;24:528–38.PubMed Reed CM, Delhorne LA. The reception of environmental sounds through wearable tactual Aids. Ear Hear. 2003;24:528–38.PubMed
98.
go back to reference Sakajiri M, Miyoshi S, Nakamura K, Fukushima S, Ifukube T: Voice pitch control using tactile feedback / or the deafblind or the hearing impaired persons to assist their singing. IEEE Int Conf Syst Man, Cybern; 2010:1483–1487. Sakajiri M, Miyoshi S, Nakamura K, Fukushima S, Ifukube T: Voice pitch control using tactile feedback / or the deafblind or the hearing impaired persons to assist their singing. IEEE Int Conf Syst Man, Cybern; 2010:1483–1487.
99.
go back to reference Yuan H, Reed CM, Durlach NI. Tactual display of consonant voicing as a supplement to lipreading. J Acoust Soc Am. 2005;118:1003–15.PubMed Yuan H, Reed CM, Durlach NI. Tactual display of consonant voicing as a supplement to lipreading. J Acoust Soc Am. 2005;118:1003–15.PubMed
100.
go back to reference Gopalai AA, Senanayake SMNA. A wearable real-time intelligent posture corrective system using vibrotactile feedback. IEEE Trans Mechatronics. 2011;16:827–34. Gopalai AA, Senanayake SMNA. A wearable real-time intelligent posture corrective system using vibrotactile feedback. IEEE Trans Mechatronics. 2011;16:827–34.
101.
go back to reference Kentala E, Vivas J, Wall C. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol. 2003;112:404–9.PubMed Kentala E, Vivas J, Wall C. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol. 2003;112:404–9.PubMed
102.
go back to reference Wall C, Weinberg MS, Schmidt PB, Krebs DE. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng. 2001;48:1153–61.PubMed Wall C, Weinberg MS, Schmidt PB, Krebs DE. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng. 2001;48:1153–61.PubMed
103.
go back to reference Wall C, Weinberg MS: Balance prostheses for postural control. IEEE Eng Med Biol Mag 2003;22:84–90. Wall C, Weinberg MS: Balance prostheses for postural control. IEEE Eng Med Biol Mag 2003;22:84–90.
104.
go back to reference Sienko KH, Balkwill MD, Oddsson LIE, Wall C. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res. 2008;18:273–85.PubMed Sienko KH, Balkwill MD, Oddsson LIE, Wall C. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res. 2008;18:273–85.PubMed
105.
go back to reference Jeka J, Lackner JR. Fingertip contact influences human postural control. Exp Brain Res. 1994;79:495–502. Jeka J, Lackner JR. Fingertip contact influences human postural control. Exp Brain Res. 1994;79:495–502.
106.
go back to reference Lee B-C, Martin BJ, Sienko KH. Directional postural responses induced by vibrotactile stimulations applied to the torso. Exp brain Res. 2012;222:471–82.PubMed Lee B-C, Martin BJ, Sienko KH. Directional postural responses induced by vibrotactile stimulations applied to the torso. Exp brain Res. 2012;222:471–82.PubMed
107.
go back to reference Lee B-C, Martin BJ, Ho A, Sienko KH. Postural reorganization induced by torso cutaneous covibration. J Neurosci. 2013;33:7870–6.PubMed Lee B-C, Martin BJ, Ho A, Sienko KH. Postural reorganization induced by torso cutaneous covibration. J Neurosci. 2013;33:7870–6.PubMed
108.
go back to reference Haggerty S, Jiang L-T, Galecki A, Sienko KH. Effects of biofeedback on secondary-task response time and postural stability in older adults. Gait Posture. 2012;35:523–8.PubMedCentralPubMed Haggerty S, Jiang L-T, Galecki A, Sienko KH. Effects of biofeedback on secondary-task response time and postural stability in older adults. Gait Posture. 2012;35:523–8.PubMedCentralPubMed
109.
go back to reference Honegger F, Hillebrandt IMA, van den Elzen NGA, Tang K-S, Allum JHJ. The effect of prosthetic feedback on the strategies and synergies used by vestibular loss subjects to control stance. J Neuroeng Rehabil. 2013;10:115.PubMedCentralPubMed Honegger F, Hillebrandt IMA, van den Elzen NGA, Tang K-S, Allum JHJ. The effect of prosthetic feedback on the strategies and synergies used by vestibular loss subjects to control stance. J Neuroeng Rehabil. 2013;10:115.PubMedCentralPubMed
110.
go back to reference Davis JR, Carpenter MG, Tschanz R, Meyes S, Debrunner D, Burger J, et al. Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture. 2010;31:465–72.PubMed Davis JR, Carpenter MG, Tschanz R, Meyes S, Debrunner D, Burger J, et al. Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture. 2010;31:465–72.PubMed
111.
go back to reference Nanhoe-Mahabier W, Allum JH, Pasman EP, Overeem S, Bloem BR. The effects of vibrotactile biofeedback training on trunk sway in Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1017–21.PubMed Nanhoe-Mahabier W, Allum JH, Pasman EP, Overeem S, Bloem BR. The effects of vibrotactile biofeedback training on trunk sway in Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1017–21.PubMed
112.
go back to reference Vuillerme N, Chenu O, Demongeot J, Payan Y. Controlling posture using a plantar pressure-based, tongue-placed tactile biofeedback system. Exp brain Res. 2007;179:409–14.PubMed Vuillerme N, Chenu O, Demongeot J, Payan Y. Controlling posture using a plantar pressure-based, tongue-placed tactile biofeedback system. Exp brain Res. 2007;179:409–14.PubMed
113.
go back to reference Ghulyan-Bedikian V, Paolino M, Paolino F. Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: Influence of vestibular loss and old-age. Gait Posture. 2013;38:777–83.PubMed Ghulyan-Bedikian V, Paolino M, Paolino F. Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: Influence of vestibular loss and old-age. Gait Posture. 2013;38:777–83.PubMed
114.
go back to reference Mcdonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci. 2011;12:415–25.PubMed Mcdonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci. 2011;12:415–25.PubMed
115.
go back to reference Moss F. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115:267–81.PubMed Moss F. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115:267–81.PubMed
116.
go back to reference Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362:1123–4.PubMed Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362:1123–4.PubMed
117.
go back to reference Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59:4–12.PubMed Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59:4–12.PubMed
118.
go back to reference Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359–67.PubMed Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359–67.PubMed
119.
go back to reference Horak FB, Dozza M, Peterka R, Chiari L, Wall C. Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Ann N Y Acad Sci. 2009;1164:279–81.PubMedCentralPubMed Horak FB, Dozza M, Peterka R, Chiari L, Wall C. Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Ann N Y Acad Sci. 2009;1164:279–81.PubMedCentralPubMed
120.
go back to reference Janssen LJF, Verhoeff LL, Horlings CGC, Allum JHJ. Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects. Gait Posture. 2009;29:575–81.PubMed Janssen LJF, Verhoeff LL, Horlings CGC, Allum JHJ. Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects. Gait Posture. 2009;29:575–81.PubMed
121.
go back to reference Verhoeff LL, Horlings CGC, Janssen LJF, Bridenbaugh SA, Allum JHJ. Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture. 2009;30:76–81.PubMed Verhoeff LL, Horlings CGC, Janssen LJF, Bridenbaugh SA, Allum JHJ. Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture. 2009;30:76–81.PubMed
122.
go back to reference Sienko KH, Balkwill MD, Oddsson LIE, Wall C. The effect of vibrotactile feedback on postural sway during locomotor activities. J Neuroeng Rehabil. 2013;10:93.PubMedCentralPubMed Sienko KH, Balkwill MD, Oddsson LIE, Wall C. The effect of vibrotactile feedback on postural sway during locomotor activities. J Neuroeng Rehabil. 2013;10:93.PubMedCentralPubMed
123.
go back to reference Galica AM, Kang HG, Priplata AA, D’Andrea SE, Starobinets OV, Sorond FA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30:383–7.PubMedCentralPubMed Galica AM, Kang HG, Priplata AA, D’Andrea SE, Starobinets OV, Sorond FA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30:383–7.PubMedCentralPubMed
124.
go back to reference Hewer RL. Rehabilitation after stroke. Q J Med. 1990;76:659–74. Hewer RL. Rehabilitation after stroke. Q J Med. 1990;76:659–74.
125.
go back to reference Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil. 2006;3:11.PubMedCentralPubMed Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil. 2006;3:11.PubMedCentralPubMed
126.
go back to reference Jonsdottir J, Cattaneo D, Recalcati M, Regola A, Rabuffetti M, Ferrarin M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair. 2010;24:478–85.PubMed Jonsdottir J, Cattaneo D, Recalcati M, Regola A, Rabuffetti M, Ferrarin M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair. 2010;24:478–85.PubMed
127.
go back to reference Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, et al. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys. 2013;35:269–76.PubMed Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, et al. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys. 2013;35:269–76.PubMed
128.
go back to reference Rao N, Aruin AS. Auxiliary sensory cues improve automatic postural responses in individuals with diabetic neuropathy. Neurorehabil Neural Repair. 2011;25:110–7.PubMed Rao N, Aruin AS. Auxiliary sensory cues improve automatic postural responses in individuals with diabetic neuropathy. Neurorehabil Neural Repair. 2011;25:110–7.PubMed
129.
go back to reference Redd CB, Bamberg SJM. A wireless sensory feedback device for real-time gait feedback and training. IEEE/ASME Trans Mechatronics. 2012;17:425–33. Redd CB, Bamberg SJM. A wireless sensory feedback device for real-time gait feedback and training. IEEE/ASME Trans Mechatronics. 2012;17:425–33.
130.
go back to reference Van Wegen E, de Goede C, Lim I, Rietberg M, Nieuwboer A, Willems A, et al. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson’s disease. J Neurol Sci. 2006;248:210–4.PubMed Van Wegen E, de Goede C, Lim I, Rietberg M, Nieuwboer A, Willems A, et al. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson’s disease. J Neurol Sci. 2006;248:210–4.PubMed
131.
go back to reference McKinney Z, Heberer K, Nowroozi BN, Greenberg M, Fowler E, Grundfest W: Pilot evaluation of wearable tactile biofeedback system for gait rehabilitation in peripheral neuropathy. IEEE Haptics Symp. Ieee; 2014:135–140 McKinney Z, Heberer K, Nowroozi BN, Greenberg M, Fowler E, Grundfest W: Pilot evaluation of wearable tactile biofeedback system for gait rehabilitation in peripheral neuropathy. IEEE Haptics Symp. Ieee; 2014:135–140
132.
go back to reference Badke MB, Sherman J, Boyne P, Page S, Dunning K. Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study. Arch Phys Med Rehabil. 2011;92:1364–70.PubMed Badke MB, Sherman J, Boyne P, Page S, Dunning K. Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study. Arch Phys Med Rehabil. 2011;92:1364–70.PubMed
133.
go back to reference Lee I, Choi S: Effects of Multi-modal Guidance for the Acquisition of Sight Reading Skills: A Case Study with Simple Drum Sequences. IEEE World Haptics; 2013:571–576. Lee I, Choi S: Effects of Multi-modal Guidance for the Acquisition of Sight Reading Skills: A Case Study with Simple Drum Sequences. IEEE World Haptics; 2013:571–576.
134.
go back to reference Spelmezan D, Jacobs M, Hilgers A, Borchers J: Tactile motion instructions for physical activities. Conf Hum Factors Comput Syst 2009:2243–2252. Spelmezan D, Jacobs M, Hilgers A, Borchers J: Tactile motion instructions for physical activities. Conf Hum Factors Comput Syst 2009:2243–2252.
135.
go back to reference Dowling AV, Favre J, Andriacchi TP. Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am J Sports Med. 2012;40:1075–83.PubMed Dowling AV, Favre J, Andriacchi TP. Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am J Sports Med. 2012;40:1075–83.PubMed
136.
go back to reference Wheeler JW, Shull PB, Besier T. Real-time knee adduction moment feedback for gait retraining through visual and tactile displays. J Biomech Eng. 2011;133:041007.PubMed Wheeler JW, Shull PB, Besier T. Real-time knee adduction moment feedback for gait retraining through visual and tactile displays. J Biomech Eng. 2011;133:041007.PubMed
137.
go back to reference Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010;132:071007–5.PubMed Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010;132:071007–5.PubMed
138.
go back to reference Shull PB, Shultz R, Silder A, Dragoo JL, Besier TF, Cutkosky MR, et al. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46:122–8.PubMed Shull PB, Shultz R, Silder A, Dragoo JL, Besier TF, Cutkosky MR, et al. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46:122–8.PubMed
139.
go back to reference Shull PB, Silder A, Shultz R, Dragoo JL, Besier TF, Delp SL, et al. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res. 2013;31:1020–5.PubMed Shull PB, Silder A, Shultz R, Dragoo JL, Besier TF, Delp SL, et al. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res. 2013;31:1020–5.PubMed
140.
go back to reference Lurie KL, Shull PB, Nesbitt KF, Cutkosky MR: Informing haptic feedback design for gait retraining. IEEE World Haptics; 2011:19–24. Lurie KL, Shull PB, Nesbitt KF, Cutkosky MR: Informing haptic feedback design for gait retraining. IEEE World Haptics; 2011:19–24.
141.
go back to reference Jirattigalachote WJ, Shull PB, Cutkosky MR: Virtual pebble: a haptic state display for pedestrians. IEEE Ro-Man Symp; 2011:401–406. Jirattigalachote WJ, Shull PB, Cutkosky MR: Virtual pebble: a haptic state display for pedestrians. IEEE Ro-Man Symp; 2011:401–406.
142.
go back to reference Alahakone AU, Senanayake SMNA: Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 2009:1148–1153. Alahakone AU, Senanayake SMNA: Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 2009:1148–1153.
143.
go back to reference Rogers JA. A clear advance in soft actuators. Science. 2013;341:968–9.PubMed Rogers JA. A clear advance in soft actuators. Science. 2013;341:968–9.PubMed
144.
go back to reference Majidi C. Soft robotics: A perspective—current trends and prospects for the future. Soft Robot. 2014;1:5–11. Majidi C. Soft robotics: A perspective—current trends and prospects for the future. Soft Robot. 2014;1:5–11.
145.
go back to reference Yeo W-H, Kim Y-S, Lee J, Ameen A, Shi L, Li M, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater. 2013;25:2773–8.PubMed Yeo W-H, Kim Y-S, Lee J, Ameen A, Shi L, Li M, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater. 2013;25:2773–8.PubMed
146.
go back to reference Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43:679.PubMed Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43:679.PubMed
147.
go back to reference Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun. 2013;4:1543.PubMed Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun. 2013;4:1543.PubMed
148.
go back to reference Nyholm L, Nyström G, Mihranyan A, Strømme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater. 2011;23:3751–69.PubMed Nyholm L, Nyström G, Mihranyan A, Strømme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater. 2011;23:3751–69.PubMed
149.
go back to reference Park S, Jayaraman S. Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 2003;22:41–8.PubMed Park S, Jayaraman S. Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 2003;22:41–8.PubMed
150.
go back to reference Axisa F, Schmitt PM, Gehin C, Delhomme G, Mcadams E, Dittmar A, et al. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed. 2005;9:325–36.PubMed Axisa F, Schmitt PM, Gehin C, Delhomme G, Mcadams E, Dittmar A, et al. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed. 2005;9:325–36.PubMed
151.
go back to reference Poh M-Z, Swenson NC, Picard RW. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans Biomed Eng. 2010;57:1243–52.PubMed Poh M-Z, Swenson NC, Picard RW. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans Biomed Eng. 2010;57:1243–52.PubMed
Metadata
Title
Haptic wearables as sensory replacement, sensory augmentation and trainer – a review
Authors
Peter B. Shull
Dana D. Damian
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0055-z

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue