Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Stroke is the second leading cause of death worldwide and the most common cause of adult-acquired disability in many nations. Thus, attenuating the damage after ischemic injury and improving patient prognosis are of great importance. We have indicated that ischemic preconditioning (IP) can effectively reduce the damage of ischemia reperfusion and that inhibition of gap junctions may further reduce this damage. Although we confirmed that the function of gap junctions is closely associated with glutamate, we did not investigate the mechanism. In the present study, we aimed to clarify whether the blockade of cellular communication at gap junctions leads to significant reductions in the levels of glutamate released by astrocytes following cerebral ischemia.

Methods

To explore this hypothesis, we utilized the specific blocking agent carbenoxolone (CBX) to inhibit the opening and internalization of connexin 43 channels in an in vitro model of oxygen-glucose deprivation/re-oxygenation (OGD/R), following IP.

Results

OGD/R resulted in extensive astrocytic glutamate release following upregulation of hemichannel activity, thus increasing reactive oxygen species (ROS) generation and subsequent cell death. However, we observed significant increases in neuronal survival in neuron-astrocyte co-cultures that were subjected to IP prior to OGD/R. Moreover, the addition of CBX enhanced the protective effects of IP during the re-oxygenation period following OGD, by means of blocking the release of glutamate, increasing the level of the excitatory amino acid transporter 1, and downregulating glutamine expression.

Conclusions

Our results suggest that combined use of IP and CBX represents a novel therapeutic strategy to attenuate damage from cerebral ischemia with minimal adverse side effects.
Literature
2.
go back to reference Lin WY, Chang YC, Ho CJ, Huang CC. Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke. 2013;44:162–9.CrossRefPubMed Lin WY, Chang YC, Ho CJ, Huang CC. Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke. 2013;44:162–9.CrossRefPubMed
3.
go back to reference Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.CrossRefPubMed Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.CrossRefPubMed
4.
go back to reference Pérez-Pinzón MA. Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J Bioenerg Biomembr. 2004;36:323–7.CrossRefPubMed Pérez-Pinzón MA. Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J Bioenerg Biomembr. 2004;36:323–7.CrossRefPubMed
5.
go back to reference Garcia S, Rector TS, Zakharova M, Herrmann RR, Adabag S, Bertog S, Sandoval Y, Santilli S, Brilakis ES, McFalls EO. Cardiac remote ischemic preconditioning prior to elective vascular surgery (CRIPES): a prospective, randomized, sham-controlled phase II clinical trial. J Am Heart Assoc. 2016;5:e003916.CrossRefPubMedPubMedCentral Garcia S, Rector TS, Zakharova M, Herrmann RR, Adabag S, Bertog S, Sandoval Y, Santilli S, Brilakis ES, McFalls EO. Cardiac remote ischemic preconditioning prior to elective vascular surgery (CRIPES): a prospective, randomized, sham-controlled phase II clinical trial. J Am Heart Assoc. 2016;5:e003916.CrossRefPubMedPubMedCentral
6.
go back to reference Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, Anttila V, Juvonen T. Remote ischemic preconditioning attenuates oxidative stress during cardiopulmonary bypass. Heart Surg Forum. 2016;19:E192–7.CrossRefPubMed Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, Anttila V, Juvonen T. Remote ischemic preconditioning attenuates oxidative stress during cardiopulmonary bypass. Heart Surg Forum. 2016;19:E192–7.CrossRefPubMed
7.
go back to reference Chen S, Mi RK, Noh JM, Su JK, Ka SO, Ji HK, Park BH, Park JH. Erratum to: glucocorticoid suppresses connexin 43 expression by inhibiting the Akt/mTOR signaling pathway in osteoblasts. Calcif Tissue Int. 2016;99:88–97.CrossRef Chen S, Mi RK, Noh JM, Su JK, Ka SO, Ji HK, Park BH, Park JH. Erratum to: glucocorticoid suppresses connexin 43 expression by inhibiting the Akt/mTOR signaling pathway in osteoblasts. Calcif Tissue Int. 2016;99:88–97.CrossRef
8.
go back to reference Mayorquin LC, Rodriguez AV, Sutachan JJ, Albarracín SL. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons. Front Mol Neurosci. 2018;11:118. Mayorquin LC, Rodriguez AV, Sutachan JJ, Albarracín SL. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons. Front Mol Neurosci. 2018;11:118.
9.
go back to reference Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol. 2010;104:3551–6.CrossRefPubMedPubMedCentral Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol. 2010;104:3551–6.CrossRefPubMedPubMedCentral
10.
go back to reference Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L, Zhang Q, Dong Q, Zhu W, Zhang X, Bu B, Wang W. Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol. 2011;70:121–32.CrossRefPubMed Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L, Zhang Q, Dong Q, Zhu W, Zhang X, Bu B, Wang W. Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol. 2011;70:121–32.CrossRefPubMed
11.
go back to reference Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci. 2011;124:2611–21.CrossRefPubMed Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci. 2011;124:2611–21.CrossRefPubMed
12.
go back to reference Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Sáez JC. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118:826–40.CrossRefPubMedPubMedCentral Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Sáez JC. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118:826–40.CrossRefPubMedPubMedCentral
13.
go back to reference Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G. Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol. 2011;300:707–20.CrossRef Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G. Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol. 2011;300:707–20.CrossRef
14.
go back to reference Hou S, Shen PP, Zhao MM, Liu XP, Xie HY, Fang D, Feng JC. Mechanism of mitochondrial connexin43′s protection of the neurovascular unit under acute cerebral ischemia-reperfusion injury. Int J Mol Sci. 2016;17:679.CrossRefPubMedCentral Hou S, Shen PP, Zhao MM, Liu XP, Xie HY, Fang D, Feng JC. Mechanism of mitochondrial connexin43′s protection of the neurovascular unit under acute cerebral ischemia-reperfusion injury. Int J Mol Sci. 2016;17:679.CrossRefPubMedCentral
15.
go back to reference Hou S, Zhao MM, Shen PP, Liu XP, Sun Y, Feng JC. Neuroprotective effect of salvianolic acids against cerebral ischemia/reperfusion injury. Int J Mol Sc. 2016;17:1190.CrossRef Hou S, Zhao MM, Shen PP, Liu XP, Sun Y, Feng JC. Neuroprotective effect of salvianolic acids against cerebral ischemia/reperfusion injury. Int J Mol Sc. 2016;17:1190.CrossRef
16.
17.
go back to reference Kardos J, Szabó Z, Héja L. Framing neuro-glia coupling in antiepileptic drug design. J Med Chem. 2016;59:777–87.CrossRefPubMed Kardos J, Szabó Z, Héja L. Framing neuro-glia coupling in antiepileptic drug design. J Med Chem. 2016;59:777–87.CrossRefPubMed
18.
go back to reference Endong L, Shijie J, Sonobe Y, Di M, Hua L, Kawanokuchi J, Mizuno T, Suzumura A. The gap-junction inhibitor carbenoxolone suppresses the differentiation of Th17 cells through inhibition of IL-23 expression in antigen presenting cells. J Neuroimmunol. 2011;240-241:58–64.CrossRefPubMed Endong L, Shijie J, Sonobe Y, Di M, Hua L, Kawanokuchi J, Mizuno T, Suzumura A. The gap-junction inhibitor carbenoxolone suppresses the differentiation of Th17 cells through inhibition of IL-23 expression in antigen presenting cells. J Neuroimmunol. 2011;240-241:58–64.CrossRefPubMed
19.
go back to reference Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, Kawanokuchi J, Mizuno T, Sawada M, Suzumura A. Blockade of microglial glutamate release protects against ischemic brain injury. Exp Neurol. 2008;214:144–6.CrossRefPubMed Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, Kawanokuchi J, Mizuno T, Sawada M, Suzumura A. Blockade of microglial glutamate release protects against ischemic brain injury. Exp Neurol. 2008;214:144–6.CrossRefPubMed
20.
go back to reference Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994;14(9):5559–69.CrossRefPubMed Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994;14(9):5559–69.CrossRefPubMed
21.
22.
go back to reference Davidson JO, Green CR, Nicholson LF, Bennet L, Gunn AJ. Deleterious effects of high dose connexin 43 mimetic peptide infusion after cerebral ischaemia in near-term fetal sheep. Int J Mol Sci. 2012;13(5):6303–19.CrossRefPubMedPubMedCentral Davidson JO, Green CR, Nicholson LF, Bennet L, Gunn AJ. Deleterious effects of high dose connexin 43 mimetic peptide infusion after cerebral ischaemia in near-term fetal sheep. Int J Mol Sci. 2012;13(5):6303–19.CrossRefPubMedPubMedCentral
23.
go back to reference Nakase T, Fushiki S, Söhl G, Theis M, Willecke K, Naus CC. Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes. 2009;10:413–7.CrossRef Nakase T, Fushiki S, Söhl G, Theis M, Willecke K, Naus CC. Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes. 2009;10:413–7.CrossRef
24.
go back to reference Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32:1310–6.CrossRefPubMedPubMedCentral Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32:1310–6.CrossRefPubMedPubMedCentral
25.
go back to reference Nakase T, Söhl G, Theis M, Willecke K, Naus CC. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol. 2004;164:2067–75.CrossRefPubMedPubMedCentral Nakase T, Söhl G, Theis M, Willecke K, Naus CC. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol. 2004;164:2067–75.CrossRefPubMedPubMedCentral
26.
go back to reference Contreras JE, Sánchez HA, Eugenín EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sc USA. 2002;99:495–500.CrossRef Contreras JE, Sánchez HA, Eugenín EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sc USA. 2002;99:495–500.CrossRef
27.
go back to reference Xie H, Yu C, Shuai H, Wang J, Jing M, Fang D, Feng J. Evaluation of connexin 43 redistribution and endocytosis in astrocytes subjected to ischemia/reperfusion or oxygen-glucose deprivation and reoxygenation. Biomed Res Int. 2017;2017:5064683.PubMedPubMedCentral Xie H, Yu C, Shuai H, Wang J, Jing M, Fang D, Feng J. Evaluation of connexin 43 redistribution and endocytosis in astrocytes subjected to ischemia/reperfusion or oxygen-glucose deprivation and reoxygenation. Biomed Res Int. 2017;2017:5064683.PubMedPubMedCentral
28.
go back to reference Nikiforou M, Vlassaks E, Strackx E, Kramer BW, Vles JS, Gavilanes AW. Preconditioning by oxygen-glucose deprivation preserves cell proliferation and reduces cytotoxicity in primary astrocyte cultures. CNS Neurol Disord Drug Targets. 2015;14:61–7.CrossRefPubMed Nikiforou M, Vlassaks E, Strackx E, Kramer BW, Vles JS, Gavilanes AW. Preconditioning by oxygen-glucose deprivation preserves cell proliferation and reduces cytotoxicity in primary astrocyte cultures. CNS Neurol Disord Drug Targets. 2015;14:61–7.CrossRefPubMed
31.
go back to reference Karatinos J, Rosse RB, Deutsch SI. The nitric oxide pathway: potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol. 1995;18:482–99.CrossRefPubMed Karatinos J, Rosse RB, Deutsch SI. The nitric oxide pathway: potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol. 1995;18:482–99.CrossRefPubMed
32.
go back to reference Yu S, Wang X, Lei S, Chen X, Liu Y, Zhou Y, Zhou Y, Wu J, Zhao Y. Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage. Neurochem Int. 2015;82:19–27.CrossRefPubMed Yu S, Wang X, Lei S, Chen X, Liu Y, Zhou Y, Zhou Y, Wu J, Zhao Y. Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage. Neurochem Int. 2015;82:19–27.CrossRefPubMed
33.
go back to reference Leng T, Shi Y, Xiong ZG, Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol. 2014;115:189–209.CrossRefPubMed Leng T, Shi Y, Xiong ZG, Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol. 2014;115:189–209.CrossRefPubMed
35.
go back to reference Lu Q, Wainwright MS, Harris VA, Aggarwal S, Hou Y, Rau T, Poulsen DJ, Black SM. Increased NADPH oxidase derived superoxide is involved in the neuronal cell death induced by hypoxia ischemia in neonatal hippocampal slice cultures. Free Radic Biol Med. 2012;53:1139–51.CrossRefPubMedPubMedCentral Lu Q, Wainwright MS, Harris VA, Aggarwal S, Hou Y, Rau T, Poulsen DJ, Black SM. Increased NADPH oxidase derived superoxide is involved in the neuronal cell death induced by hypoxia ischemia in neonatal hippocampal slice cultures. Free Radic Biol Med. 2012;53:1139–51.CrossRefPubMedPubMedCentral
37.
go back to reference Kim Y, Davidson JO, Green CR, Nicholson LFB, O’Carroll SJ, Zhang J. Connexins and pannexins in cerebral ischemia. Biochim Biophys Acta. 2018;1860(1):224–36.CrossRefPubMed Kim Y, Davidson JO, Green CR, Nicholson LFB, O’Carroll SJ, Zhang J. Connexins and pannexins in cerebral ischemia. Biochim Biophys Acta. 2018;1860(1):224–36.CrossRefPubMed
38.
go back to reference Guruswamy R, ElAli A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci. 2017;18(3):496. Guruswamy R, ElAli A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci. 2017;18(3):496.
39.
go back to reference Ma D, Jin S, Li E, Doi Y, Parajuli B, Noda M, Sonobe Y, Mizuno T, Suzumura A. The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol. 2013;254(1–2):10–8.CrossRefPubMed Ma D, Jin S, Li E, Doi Y, Parajuli B, Noda M, Sonobe Y, Mizuno T, Suzumura A. The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol. 2013;254(1–2):10–8.CrossRefPubMed
40.
41.
42.
go back to reference Santello M, Bezzi P, Volterra A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron. 2011;69:988–1001.CrossRefPubMed Santello M, Bezzi P, Volterra A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron. 2011;69:988–1001.CrossRefPubMed
43.
go back to reference Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, Clercq ED, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001;4:702–10.CrossRefPubMed Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, Clercq ED, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001;4:702–10.CrossRefPubMed
44.
go back to reference Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation. 2012;9:275.CrossRefPubMedPubMedCentral Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation. 2012;9:275.CrossRefPubMedPubMedCentral
45.
go back to reference Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 2007;85:2059–70.CrossRefPubMed Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 2007;85:2059–70.CrossRefPubMed
46.
go back to reference Sánchez JA, Rodríguezsinovas A, Barba I, Mirócasas E, Fernándezsanz C, Ruizmeana M, Alburquerque-Béjar JJ, García-Dorado D. Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia–reperfusion injury and preconditioning protection. Basic Res Cardiol. 2013;108:351.CrossRefPubMed Sánchez JA, Rodríguezsinovas A, Barba I, Mirócasas E, Fernándezsanz C, Ruizmeana M, Alburquerque-Béjar JJ, García-Dorado D. Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia–reperfusion injury and preconditioning protection. Basic Res Cardiol. 2013;108:351.CrossRefPubMed
47.
go back to reference Farahani R, Pina-Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JC, Stanton PK, Rozental R. Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good samaritans” or executioners. Glia. 2005;50:351–61.CrossRefPubMed Farahani R, Pina-Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JC, Stanton PK, Rozental R. Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good samaritans” or executioners. Glia. 2005;50:351–61.CrossRefPubMed
48.
go back to reference Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci. 2014;8:189.CrossRefPubMedPubMedCentral Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci. 2014;8:189.CrossRefPubMedPubMedCentral
Metadata
Title
Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia
Publication date
01-12-2018
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1230-5

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue