Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats

Authors: Ruihe Lin, Jingli Cai, Eric W. Kostuk, Robert Rosenwasser, Lorraine Iacovitti

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Dimethyl fumarate (DMF), working via its metabolite monomethylfumarate (MMF), acts as a potent antioxidant and immunomodulator in animal models of neurologic disease and in patients with multiple sclerosis. These properties and their translational potential led us to investigate whether DMF/MMF could also protect at-risk and/or dying neurons in models of ischemic stroke in vitro and in vivo. Although the antioxidant effects have been partially addressed, the benefits of DMF immunomodulation after ischemic stroke still need to be explored.

Methods

In vitro neuronal culture with oxygen-glucose deprivation and rats with middle cerebral artery occlusion were subjected to DMF/MMF treatment. Live/dead cell counting and LDH assay, as well as behavioral deficits, plasma cytokine assay, western blots, real-time PCR (Q-PCR) and immunofluorescence staining, were used to evaluate the mechanisms and neurological outcomes.

Results

We found that MMF significantly rescued cortical neurons from oxygen-glucose deprivation (OGD) in culture and suppressed pro-inflammatory cytokines produced by primary mixed neuron/glia cultures subjected to OGD. In rats, DMF treatment significantly decreased infarction volume by nearly 40 % and significantly improved neurobehavioral deficits after middle cerebral artery occlusion (MCAO). In the acute early phase (72 h after MCAO), DMF induced the expression of transcription factor Nrf2 and its downstream mediator HO-1, important for the protection of infarcted cells against oxidative stress. In addition to its antioxidant role, DMF also acted as a potent immunomodulator, reducing the infiltration of neutrophils and T cells and the number of activated microglia/macrophages in the infarct region by more than 50 % by 7–14 days after MCAO. Concomitantly, the levels of potentially harmful pro-inflammatory cytokines were greatly reduced in the plasma and brain and in OGD neuron/glia cultures.

Conclusions

We conclude that DMF is neuroprotective in experimental stroke because of its potent immunomodulatory and antioxidant effects and thus may be useful as a novel therapeutic agent to treat stroke in patients.
Appendix
Available only for authorised users
Literature
4.
go back to reference Chapman KZ, Dale VQ, Dénes A, Bennett G, Rothwell NJ, Allan SM, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29:1764–8.CrossRefPubMed Chapman KZ, Dale VQ, Dénes A, Bennett G, Rothwell NJ, Allan SM, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29:1764–8.CrossRefPubMed
7.
go back to reference Clausen BH, Lambertsen KL, Babcock A, Holm TH, Dagnaes-Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008;5:46.CrossRefPubMedPubMedCentral Clausen BH, Lambertsen KL, Babcock A, Holm TH, Dagnaes-Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008;5:46.CrossRefPubMedPubMedCentral
9.
go back to reference Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.CrossRefPubMed Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.CrossRefPubMed
10.
go back to reference Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon—in ischemic stroke. Circulation. 2006;113:2105–12.CrossRefPubMed Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon—in ischemic stroke. Circulation. 2006;113:2105–12.CrossRefPubMed
12.
go back to reference Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler J, Vandenbark A, et al. Reduced lesion size and inflammation. Blood. 2008;27:1798–805. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler J, Vandenbark A, et al. Reduced lesion size and inflammation. Blood. 2008;27:1798–805.
13.
go back to reference Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler D, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.CrossRefPubMed Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler D, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.CrossRefPubMed
15.
go back to reference Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci. 2008;28:2221–30.CrossRefPubMed Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci. 2008;28:2221–30.CrossRefPubMed
16.
go back to reference Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.CrossRefPubMed Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.CrossRefPubMed
17.
go back to reference Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5:73–90.PubMedPubMedCentral Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5:73–90.PubMedPubMedCentral
18.
go back to reference Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–70.CrossRefPubMed Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–70.CrossRefPubMed
19.
go back to reference Campanella M, Sciorati C, Tarozzo G, Beltramo M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke. 2002;33:586–92.CrossRefPubMed Campanella M, Sciorati C, Tarozzo G, Beltramo M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke. 2002;33:586–92.CrossRefPubMed
27.
go back to reference Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.CrossRefPubMed Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.CrossRefPubMed
33.
go back to reference Linker R, Lee DH, Ryan S, Van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–92.CrossRefPubMed Linker R, Lee DH, Ryan S, Van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–92.CrossRefPubMed
34.
go back to reference Schilling S, Goelz S, Linker R, Luehder F, Gold R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol. 2006;145:101–7.CrossRefPubMedPubMedCentral Schilling S, Goelz S, Linker R, Luehder F, Gold R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol. 2006;145:101–7.CrossRefPubMedPubMedCentral
35.
go back to reference Moharregh-Khiabani D, Linker R, Gold R, Stangel M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol. 2009;7:60–4.CrossRefPubMedPubMedCentral Moharregh-Khiabani D, Linker R, Gold R, Stangel M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol. 2009;7:60–4.CrossRefPubMedPubMedCentral
38.
go back to reference Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30.CrossRefPubMedPubMedCentral Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30.CrossRefPubMedPubMedCentral
39.
go back to reference Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One. 2011;6:1–11.CrossRef Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One. 2011;6:1–11.CrossRef
41.
go back to reference Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation [Internet]. 2012;9:163. Available from: ???. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation [Internet]. 2012;9:163. Available from: ???.
45.
go back to reference Kunze R, Urrutia A, Hoffmann A, Liu H, Helluy X, Pham M, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp Neurol. 2015;266:99–111.CrossRefPubMed Kunze R, Urrutia A, Hoffmann A, Liu H, Helluy X, Pham M, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp Neurol. 2015;266:99–111.CrossRefPubMed
46.
go back to reference Lin-Holderer J, Li L, Gruneberg D, Marti HH, Kunze R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology. 2016;105:228–40.CrossRefPubMed Lin-Holderer J, Li L, Gruneberg D, Marti HH, Kunze R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology. 2016;105:228–40.CrossRefPubMed
50.
go back to reference Litjens NHR, Nibbering PH, Barrois AJ, Zomerdijk TPL, Van Den Oudenrijn AC, Noz K, et al. Beneficial effects of fumarate therapy in psoriasis vulgaris patients coincide with downregulation of type 1 cytokines. Br J Dermatol. 2003;148:444–51.CrossRefPubMed Litjens NHR, Nibbering PH, Barrois AJ, Zomerdijk TPL, Van Den Oudenrijn AC, Noz K, et al. Beneficial effects of fumarate therapy in psoriasis vulgaris patients coincide with downregulation of type 1 cytokines. Br J Dermatol. 2003;148:444–51.CrossRefPubMed
51.
go back to reference Moed H, Stoof TJ, Boorsma DM, Von Blomberg BME, Gibbs S, Bruynzeel DP, et al. Identification of anti-inflammatory drugs according to their capacity to suppress type-1 and type-2 T cell profiles. Clin Exp Allergy. 2004;34:1868–75.CrossRefPubMed Moed H, Stoof TJ, Boorsma DM, Von Blomberg BME, Gibbs S, Bruynzeel DP, et al. Identification of anti-inflammatory drugs according to their capacity to suppress type-1 and type-2 T cell profiles. Clin Exp Allergy. 2004;34:1868–75.CrossRefPubMed
57.
go back to reference Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25:10321–35.CrossRefPubMed Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25:10321–35.CrossRefPubMed
66.
go back to reference Zaremba J, Losy J. Interleukin-12 in acute ischemic stroke patients. Folia Neuropathol. 2006;44:59–66.PubMed Zaremba J, Losy J. Interleukin-12 in acute ischemic stroke patients. Folia Neuropathol. 2006;44:59–66.PubMed
68.
go back to reference Ciric B, El-behi M, Cabrera R, Zhang GX, Rostami A. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol. 2009;182:5296-305. Ciric B, El-behi M, Cabrera R, Zhang GX, Rostami A. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol. 2009;182:5296-305.
Metadata
Title
Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats
Authors
Ruihe Lin
Jingli Cai
Eric W. Kostuk
Robert Rosenwasser
Lorraine Iacovitti
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0733-1

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue