Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Loss of Schwann cell plasticity in chronic inflammatory demyelinating polyneuropathy (CIDP)

Authors: Abhijeet R. Joshi, Laura Holtmann, Ilja Bobylev, Christian Schneider, Christian Ritter, Joachim Weis, Helmar C. Lehmann

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Chronic inflammatory demyelinating polyneuropathy (CIDP) is often associated with chronic disability, which can be accounted to incomplete regeneration of injured axons. We hypothesized that Schwann cell support for regenerating axons may be altered in CIDP, which may account for the poor clinical recovery seen in many patients.

Methods

We exposed human and rodent Schwann cells to sera from CIDP patients and controls. In a model of chronic nerve denervation, we transplanted these conditioned Schwann cells intraneurally and assessed their capacity to support axonal regeneration by electrophysiology and morphometry.

Results

CIDP-conditioned Schwann cells were less growth supportive for regenerating axons as compared to Schwann cells exposed to control sera. The loss of Schwann cell support was associated with lower levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in CIDP sera and correlated with altered expression of c-Jun and p57kip2 in Schwann cells. The inactivation of these regulatory factors resulted in an altered expression of neurotrophins including BDNF, GDNF, and NGF in CIDP-conditioned Schwann cells in vitro.

Conclusions

Our study provides evidence that pro-regenerative functions of Schwann cells are affected in CIDP. It thereby offers a possible explanation for the clinical observation that in many CIDP patients recovery is incomplete despite sufficient immunosuppressive treatment.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Mathys C, Aissa J, Hoerste GM, Meyer G, Reichelt DC, Antoch G, Turowski B, Hartung H-P, Sheikh KA, Lehmann HC. Peripheral neuropathy: assessment of proximal nerve integrity by diffusion tensor imaging. Muscle Nerve. 2013;48:889–96.CrossRefPubMed Mathys C, Aissa J, Hoerste GM, Meyer G, Reichelt DC, Antoch G, Turowski B, Hartung H-P, Sheikh KA, Lehmann HC. Peripheral neuropathy: assessment of proximal nerve integrity by diffusion tensor imaging. Muscle Nerve. 2013;48:889–96.CrossRefPubMed
3.
go back to reference Simmons Z, Albers J, Bromberg M, Feldman E. Long-term follow-up of patients with chronic inflammatory demyelinating polyradiculoneuropathy, without and with monoclonal gammopathy. Brain. 1995;118(Pt 2):359–68.CrossRefPubMed Simmons Z, Albers J, Bromberg M, Feldman E. Long-term follow-up of patients with chronic inflammatory demyelinating polyradiculoneuropathy, without and with monoclonal gammopathy. Brain. 1995;118(Pt 2):359–68.CrossRefPubMed
4.
go back to reference Köller H, Kieseier BC, Jander S, Hartung H-P. Chronic inflammatory demyelinating polyneuropathy. N Engl J Med. 2005;352:1343–56.CrossRefPubMed Köller H, Kieseier BC, Jander S, Hartung H-P. Chronic inflammatory demyelinating polyneuropathy. N Engl J Med. 2005;352:1343–56.CrossRefPubMed
5.
go back to reference Iijima M, Yamamoto M, Hirayama M, Tanaka F, Katsuno M, Mori K, Koike H, Hattori N, Arimura K, Nakagawa M. Clinical and electrophysiologic correlates of IVIg responsiveness in CIDP. Neurology. 2005;64:1471–5.CrossRefPubMed Iijima M, Yamamoto M, Hirayama M, Tanaka F, Katsuno M, Mori K, Koike H, Hattori N, Arimura K, Nakagawa M. Clinical and electrophysiologic correlates of IVIg responsiveness in CIDP. Neurology. 2005;64:1471–5.CrossRefPubMed
6.
go back to reference Joshi AR, Bobylev I, Zhang G, Sheikh KA, Lehmann HC. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Exp Neurol. 2015;263:28–38.CrossRefPubMed Joshi AR, Bobylev I, Zhang G, Sheikh KA, Lehmann HC. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Exp Neurol. 2015;263:28–38.CrossRefPubMed
7.
go back to reference Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75:633–47.CrossRefPubMedPubMedCentral Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75:633–47.CrossRefPubMedPubMedCentral
8.
go back to reference Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol. 2012;98:16–37.CrossRefPubMed Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol. 2012;98:16–37.CrossRefPubMed
9.
go back to reference Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia. 2008;56:1552–65.CrossRefPubMed Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia. 2008;56:1552–65.CrossRefPubMed
10.
go back to reference Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, Hartung HP, Küry P. The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci U S A. 2008;105:8748–53.CrossRefPubMedPubMedCentral Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, Hartung HP, Küry P. The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci U S A. 2008;105:8748–53.CrossRefPubMedPubMedCentral
11.
go back to reference Heinen A, Lehmann HC, Küry P. Negative regulators of Schwann cell differentiation: novel targets for peripheral nerve therapies? J Clin Immunol. 2013;33:18–26.CrossRef Heinen A, Lehmann HC, Küry P. Negative regulators of Schwann cell differentiation: novel targets for peripheral nerve therapies? J Clin Immunol. 2013;33:18–26.CrossRef
12.
go back to reference Mirsky R, Jessen KR. Schwann cell development, differentiation and myelination. Curr Opin Neurobiol. 1996;6:89–96.CrossRefPubMed Mirsky R, Jessen KR. Schwann cell development, differentiation and myelination. Curr Opin Neurobiol. 1996;6:89–96.CrossRefPubMed
13.
go back to reference Van den Bergh PYK, Hadden RDM, Bouche P, Cornblath DR, Hahn A, Illa I, Koski CL, Leger JM, Nobile-Orazio E, Pollard J. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society: first revision. Eur J Neurol. 2010;17:356–63.CrossRefPubMed Van den Bergh PYK, Hadden RDM, Bouche P, Cornblath DR, Hahn A, Illa I, Koski CL, Leger JM, Nobile-Orazio E, Pollard J. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society: first revision. Eur J Neurol. 2010;17:356–63.CrossRefPubMed
14.
go back to reference Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979;165:105–18.CrossRefPubMed Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979;165:105–18.CrossRefPubMed
15.
go back to reference Ritter C, Bobylev I, Lehmann HC. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins. J Neuroinflammation. 2015;12:1.CrossRef Ritter C, Bobylev I, Lehmann HC. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins. J Neuroinflammation. 2015;12:1.CrossRef
16.
go back to reference Lehmann HC, Lopez PHH, Zhang G, Ngyuen T, Zhang J, Kieseier BC, Mori S, Sheikh KA. Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci. 2007;27:27–34.CrossRefPubMed Lehmann HC, Lopez PHH, Zhang G, Ngyuen T, Zhang J, Kieseier BC, Mori S, Sheikh KA. Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci. 2007;27:27–34.CrossRefPubMed
17.
go back to reference Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15:3886–95.PubMed Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15:3886–95.PubMed
18.
go back to reference Heine W, Conant K, Griffin JW, Hoke A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004;189:231–40.CrossRefPubMed Heine W, Conant K, Griffin JW, Hoke A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004;189:231–40.CrossRefPubMed
19.
go back to reference Chernousov MA, Rothblum K, Stahl RC, Evans A, Prentiss L, Carey DJ. Glypican-1 and alpha-4 (V) collagen are required for Schwann cell myelination. J Neurosci. 2006;26:508–17.CrossRefPubMed Chernousov MA, Rothblum K, Stahl RC, Evans A, Prentiss L, Carey DJ. Glypican-1 and alpha-4 (V) collagen are required for Schwann cell myelination. J Neurosci. 2006;26:508–17.CrossRefPubMed
20.
go back to reference Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S. The effect of electrospun gelatin fibers alignment on Schwann cell and axon behavior and organization in the perspective of artificial nerve design. Int J Mol Sci. 2015;16:12925–42.CrossRefPubMedPubMedCentral Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S. The effect of electrospun gelatin fibers alignment on Schwann cell and axon behavior and organization in the perspective of artificial nerve design. Int J Mol Sci. 2015;16:12925–42.CrossRefPubMedPubMedCentral
21.
go back to reference Lopez-Fagundo C, Bar-Kochba E, Livi LL, Hoffman-Kim D, Franck C. Three-dimensional traction forces of Schwann cells on compliant substrates. J R Soc Interface. 2015;11:20140247.CrossRef Lopez-Fagundo C, Bar-Kochba E, Livi LL, Hoffman-Kim D, Franck C. Three-dimensional traction forces of Schwann cells on compliant substrates. J R Soc Interface. 2015;11:20140247.CrossRef
22.
go back to reference Küry P, Greiner-Petter R, Cornely C, Jorgens T, Muller HW. Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells. J Neurosci. 2002;22:7586–95.PubMed Küry P, Greiner-Petter R, Cornely C, Jorgens T, Muller HW. Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells. J Neurosci. 2002;22:7586–95.PubMed
23.
go back to reference Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol. 2012;198:127–41.CrossRefPubMedPubMedCentral Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol. 2012;198:127–41.CrossRefPubMedPubMedCentral
24.
go back to reference Rajabally YA, Nicolas G, Pieret F, Bouche P, Van den Bergh PYK. Validity of diagnostic criteria for chronic inflammatory demyelinating polyneuropathy: a multicentre European study. J Neurol Neurosurg Psychiatry. 2009;80:1364–8.CrossRefPubMed Rajabally YA, Nicolas G, Pieret F, Bouche P, Van den Bergh PYK. Validity of diagnostic criteria for chronic inflammatory demyelinating polyneuropathy: a multicentre European study. J Neurol Neurosurg Psychiatry. 2009;80:1364–8.CrossRefPubMed
25.
go back to reference Harbo T, Andersen H, Jakobsen J. Length-dependent weakness and electrophysiological signs of secondary axonal loss in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve. 2008;38:1036–45.CrossRefPubMed Harbo T, Andersen H, Jakobsen J. Length-dependent weakness and electrophysiological signs of secondary axonal loss in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve. 2008;38:1036–45.CrossRefPubMed
26.
go back to reference Franzen R, Bouhy D, Schoenen J. Nervous system injury: focus on the inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci Lett. 2004;361:76–8.CrossRefPubMed Franzen R, Bouhy D, Schoenen J. Nervous system injury: focus on the inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci Lett. 2004;361:76–8.CrossRefPubMed
27.
go back to reference Sainaghi PP, Collimedaglia L, Alciato F, Leone MA, Naldi P, Molinari R, Monaco F, Avanzi GC. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barre syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine. 2010;51:138–43.CrossRefPubMed Sainaghi PP, Collimedaglia L, Alciato F, Leone MA, Naldi P, Molinari R, Monaco F, Avanzi GC. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barre syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine. 2010;51:138–43.CrossRefPubMed
28.
go back to reference Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998;10:2707–13.CrossRefPubMed Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998;10:2707–13.CrossRefPubMed
29.
go back to reference Mirski R, Reichert F, Klar A, Rotshenker S. Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. J Neuroimmunol. 2003;140:88–96.CrossRefPubMed Mirski R, Reichert F, Klar A, Rotshenker S. Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. J Neuroimmunol. 2003;140:88–96.CrossRefPubMed
30.
go back to reference Rotshenker S: Wallerian degeneration. In: Encyclopedia of Pain. Springer; 2013: 4251-4258 Rotshenker S: Wallerian degeneration. In: Encyclopedia of Pain. Springer; 2013: 4251-4258
31.
go back to reference Adunyah SE, Unlap TM, Wagner F, Kraft AS. Regulation of c-jun expression and AP-1 enhancer activity by granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1991;266:5670–5.PubMed Adunyah SE, Unlap TM, Wagner F, Kraft AS. Regulation of c-jun expression and AP-1 enhancer activity by granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1991;266:5670–5.PubMed
32.
go back to reference Konishi Y, Chui D, Hirose H, Kunishita T, Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 1993;609:29–35.CrossRefPubMed Konishi Y, Chui D, Hirose H, Kunishita T, Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 1993;609:29–35.CrossRefPubMed
33.
go back to reference Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R. c-Jun is a negative regulator of myelination. J Cell Biol. 2008;181:625–37.CrossRefPubMedPubMedCentral Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R. c-Jun is a negative regulator of myelination. J Cell Biol. 2008;181:625–37.CrossRefPubMedPubMedCentral
34.
go back to reference Hutton EJ, Carty L, Laura M, Houlden H, Lunn M, Brandner S, Mirsky R, Jessen K, Reilly MM. c-Jun expression in human neuropathies: a pilot study. J Peripher Nerv Syst. 2011;16:295–303.CrossRefPubMed Hutton EJ, Carty L, Laura M, Houlden H, Lunn M, Brandner S, Mirsky R, Jessen K, Reilly MM. c-Jun expression in human neuropathies: a pilot study. J Peripher Nerv Syst. 2011;16:295–303.CrossRefPubMed
35.
go back to reference Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183:610–9.CrossRefPubMed Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183:610–9.CrossRefPubMed
36.
go back to reference Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci. 2000;12:4171–80.PubMed Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci. 2000;12:4171–80.PubMed
37.
go back to reference Yin Q, Kemp GJ, Frostick SP. Neurotrophins, neurones and peripheral nerve regeneration. J Hand Surg Eur Vol. 1998;23:433–7.CrossRef Yin Q, Kemp GJ, Frostick SP. Neurotrophins, neurones and peripheral nerve regeneration. J Hand Surg Eur Vol. 1998;23:433–7.CrossRef
38.
go back to reference Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience. 1997;76:1153–8.CrossRefPubMed Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience. 1997;76:1153–8.CrossRefPubMed
39.
go back to reference Huang L, Quan X, Liu Z, Ma T, Wu Y, Ge J, Zhu S, Yang Y, Liu L, Sun Z. c-Jun gene-modified Schwann cells: upregulating multiple neurotrophic factors and promoting neurite outgrowth. Tissue Eng Part A. 2015;21:1409–21.CrossRefPubMedPubMedCentral Huang L, Quan X, Liu Z, Ma T, Wu Y, Ge J, Zhu S, Yang Y, Liu L, Sun Z. c-Jun gene-modified Schwann cells: upregulating multiple neurotrophic factors and promoting neurite outgrowth. Tissue Eng Part A. 2015;21:1409–21.CrossRefPubMedPubMedCentral
40.
go back to reference Sulaiman OAR, Gordon T. Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia. 2000;32:234–46.CrossRefPubMed Sulaiman OAR, Gordon T. Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia. 2000;32:234–46.CrossRefPubMed
Metadata
Title
Loss of Schwann cell plasticity in chronic inflammatory demyelinating polyneuropathy (CIDP)
Authors
Abhijeet R. Joshi
Laura Holtmann
Ilja Bobylev
Christian Schneider
Christian Ritter
Joachim Weis
Helmar C. Lehmann
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0711-7

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue