Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Epistasis analysis links immune cascades and cerebral amyloidosis

Authors: Andréa L. Benedet, Aurélie Labbe, Philippe Lemay, Eduardo R. Zimmer, Tharick A. Pascoal, Antoine Leuzy, Sulantha Mathotaarachchi, Sara Mohades, Monica Shin, Alexandre Dionne-Laporte, Thomas Beaudry, Cynthia Picard, Serge Gauthier, Judes Poirier, Guy Rouleau, Pedro Rosa-Neto, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Several lines of evidence suggest the involvement of neuroinflammatory changes in Alzheimer’s disease (AD) pathophysiology such as amyloidosis and neurodegeneration. In fact, genome-wide association studies (GWAS) have shown a link between genes involved in neuroinflammation and AD. In order to further investigate whether interactions between candidate genetic variances coding for neuroinflammatory molecules are associated with brain amyloid β (Aβ) fibrillary accumulation, we conducted an epistasis analysis on a pool of genes associated with molecular mediators of inflammation.

Methods

[18F]Florbetapir positron emission tomography (PET) imaging was employed to assess brain Aβ levels in 417 participants from ADNI-GO/2 and posteriorly 174 from ADNI-1. IL-1β, IL4, IL6, IL6r, IL10, IL12, IL18, C5, and C9 genes were chosen based on previous studies conducted in AD patients. Using the [18F]florbetapir standardized uptake value ratio (SUVR) as a quantitative measure of fibrillary Aβ, epistasis analyses were performed between two sets of markers of immune-related genes using gender, diagnosis, and apolipoprotein E (APOE) as covariates. Voxel-based analyses were also conducted. The results were corrected for multiple comparison tests. Cerebrospinal fluid (CSF) Aβ1-42/phosphorylated tau (p-tau) ratio concentrations were used to confirm such associations.

Results

Epistasis analysis unveiled two significant single nucleotide polymorphism (SNP)-SNP interactions (false discovery rate (FDR) threshold 0.1), both interactions between C9 gene (rs261752) and IL6r gene (rs4240872, rs7514452). In a combined sample, the interactions were confirmed (p ≤ 10–5) and associated with amyloid accumulation within cognitively normal and AD spectrum groups. Voxel-based analysis corroborated initial findings. CSF biomarker (Aβ1-42/p-tau) confirmed the genetic interaction. Additionally, rs4240872 and rs7514452 SNPs were shown to be associated with CSF and plasma concentrations of IL6r protein.

Conclusions

Certain allele combinations involving IL6r and C9 genes are associated with Aβ burden in the brain. Hypothesis-driven search for epistasis is a valuable strategy for investigating imaging endophenotypes in complex neurodegenerative diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.PubMedCentralCrossRefPubMed Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.PubMedCentralCrossRefPubMed
2.
go back to reference Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.PubMedCentralCrossRefPubMed Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.PubMedCentralCrossRefPubMed
3.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRefPubMed Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRefPubMed
4.
go back to reference Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.PubMedCentralCrossRefPubMed Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.PubMedCentralCrossRefPubMed
5.
go back to reference Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques—an immunoperoxidase study. Acta Neuropathol. 1982;57:239–42.CrossRefPubMed Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques—an immunoperoxidase study. Acta Neuropathol. 1982;57:239–42.CrossRefPubMed
6.
go back to reference Mcgeer PL, Akiyama H, Itagaki S, Mcgeer EG. Immune system response in Alzheimer’s disease. Can J Neurol Sci. 1989;16:516–27.PubMed Mcgeer PL, Akiyama H, Itagaki S, Mcgeer EG. Immune system response in Alzheimer’s disease. Can J Neurol Sci. 1989;16:516–27.PubMed
7.
go back to reference McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19:355–61.PubMed McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19:355–61.PubMed
8.
go back to reference Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21:1–14.PubMedCentralPubMed Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21:1–14.PubMedCentralPubMed
9.
go back to reference McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479–97.CrossRefPubMed McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479–97.CrossRefPubMed
11.
go back to reference Cotman CW, Tenner AJ, Cummings BJ. beta-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiol Aging. 1996;17:723–31.CrossRefPubMed Cotman CW, Tenner AJ, Cummings BJ. beta-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiol Aging. 1996;17:723–31.CrossRefPubMed
12.
go back to reference Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16:229–36.CrossRefPubMed Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16:229–36.CrossRefPubMed
13.
go back to reference Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83:623–32.PubMedCentralCrossRefPubMed Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83:623–32.PubMedCentralCrossRefPubMed
14.
go back to reference Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–93.PubMedCentralCrossRefPubMed Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–93.PubMedCentralCrossRefPubMed
15.
16.
go back to reference European Alzheimer's Disease I, Genetic, Environmental Risk in Alzheimer's D, Alzheimer's Disease Genetic C, Cohorts for H, Aging Research in Genomic E. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.CrossRef European Alzheimer's Disease I, Genetic, Environmental Risk in Alzheimer's D, Alzheimer's Disease Genetic C, Cohorts for H, Aging Research in Genomic E. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.CrossRef
17.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.CrossRefPubMed Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.CrossRefPubMed
18.
go back to reference Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, et al. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology. 2011;76:69–79.PubMedCentralCrossRefPubMed Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, et al. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology. 2011;76:69–79.PubMedCentralCrossRefPubMed
19.
go back to reference Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, et al. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry. 2013;19(3):351–7.PubMedCentralCrossRefPubMed Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, et al. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry. 2013;19(3):351–7.PubMedCentralCrossRefPubMed
20.
go back to reference Siemiatycki J, Thomas DC. Biological models and statistical interactions—an example from multistage carcinogenesis. Int J Epidemiol. 1981;10:383–7.CrossRefPubMed Siemiatycki J, Thomas DC. Biological models and statistical interactions—an example from multistage carcinogenesis. Int J Epidemiol. 1981;10:383–7.CrossRefPubMed
21.
go back to reference Cordell HJ. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–8.CrossRefPubMed Cordell HJ. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–8.CrossRefPubMed
22.
go back to reference Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–33.CrossRefPubMed Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–33.CrossRefPubMed
23.
24.
go back to reference Wu LY, Rowley J, Mohades S, Leuzy A, Dauar MT, Shin M, et al. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment. Plos One. 2012;7(10):e47905.PubMedCentralCrossRefPubMed Wu LY, Rowley J, Mohades S, Leuzy A, Dauar MT, Shin M, et al. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment. Plos One. 2012;7(10):e47905.PubMedCentralCrossRefPubMed
25.
go back to reference Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging. 1997;18:415–21.CrossRefPubMed Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging. 1997;18:415–21.CrossRefPubMed
26.
27.
go back to reference Weisman D, Hakimian E, Ho GJ. Interleukins, inflammation, and mechanisms of Alzheimer’s disease. Vitam Horm. 2006;74:505–30.CrossRefPubMed Weisman D, Hakimian E, Ho GJ. Interleukins, inflammation, and mechanisms of Alzheimer’s disease. Vitam Horm. 2006;74:505–30.CrossRefPubMed
28.
go back to reference Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68:930–41.CrossRefPubMed Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68:930–41.CrossRefPubMed
29.
go back to reference Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S, et al. Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis. 2011;25:59–76.PubMedCentralPubMed Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S, et al. Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis. 2011;25:59–76.PubMedCentralPubMed
30.
go back to reference Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.PubMedCentralCrossRefPubMed Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.PubMedCentralCrossRefPubMed
31.
go back to reference Hampel H, Sunderland T, Kotter HU, Schneider C, Teipel SJ, Padberg F, et al. Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer’s disease. Brain Res. 1998;780:356–9.CrossRefPubMed Hampel H, Sunderland T, Kotter HU, Schneider C, Teipel SJ, Padberg F, et al. Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer’s disease. Brain Res. 1998;780:356–9.CrossRefPubMed
32.
go back to reference Stubner S, Schon T, Padberg F, Teipel SJ, Schwarz MJ, Haslinger A, et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett. 1999;259:145–8.CrossRefPubMed Stubner S, Schon T, Padberg F, Teipel SJ, Schwarz MJ, Haslinger A, et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett. 1999;259:145–8.CrossRefPubMed
33.
go back to reference Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L. Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett. 2007;114:46–51.CrossRefPubMed Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L. Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett. 2007;114:46–51.CrossRefPubMed
34.
go back to reference Shaftel SS, Griffin WS, O'Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7.PubMedCentralCrossRefPubMed Shaftel SS, Griffin WS, O'Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7.PubMedCentralCrossRefPubMed
35.
go back to reference Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas I, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18:1812–9.CrossRefPubMed Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas I, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18:1812–9.CrossRefPubMed
37.
go back to reference Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. Plos One. 2009;4(8):e6501.PubMedCentralCrossRefPubMed Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. Plos One. 2009;4(8):e6501.PubMedCentralCrossRefPubMed
38.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedCentralCrossRefPubMed Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedCentralCrossRefPubMed
39.
go back to reference Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed
41.
go back to reference Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PIW. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCentralCrossRefPubMed Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PIW. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCentralCrossRefPubMed
42.
go back to reference Team RDC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. ISBN 3-900051-07-0. Team RDC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. ISBN 3-900051-07-0.
43.
go back to reference Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.PubMedCentralCrossRefPubMed Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.PubMedCentralCrossRefPubMed
44.
go back to reference Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M, Coart E, Blennow K, et al. Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol. 2011;121:597–609.PubMedCentralCrossRefPubMed Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M, Coart E, Blennow K, et al. Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol. 2011;121:597–609.PubMedCentralCrossRefPubMed
45.
go back to reference Worsley KJ. Developments in random field theory. In: Human brain function volume 2. 2003. p. 881–86. Worsley KJ. Developments in random field theory. In: Human brain function volume 2. 2003. p. 881–86.
46.
go back to reference Nolan JM, Loskutova E, Howard AN, Moran R, Mulcahy R, Stack J, et al. Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis. 2014;42(4):1191–202.PubMed Nolan JM, Loskutova E, Howard AN, Moran R, Mulcahy R, Stack J, et al. Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis. 2014;42(4):1191–202.PubMed
47.
go back to reference Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL, Gowrisankar S, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet. 2013;45:1366–70.PubMedCentralCrossRefPubMed Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL, Gowrisankar S, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet. 2013;45:1366–70.PubMedCentralCrossRefPubMed
48.
49.
go back to reference Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37:289–305.CrossRefPubMed Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37:289–305.CrossRefPubMed
50.
go back to reference Janeway CATP, Walport M, Shlomchik M. Immunobiology. 6th ed. New York: Garland Publishing; 2001. Janeway CATP, Walport M, Shlomchik M. Immunobiology. 6th ed. New York: Garland Publishing; 2001.
51.
go back to reference Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1992;89:10016–20.PubMedCentralCrossRefPubMed Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1992;89:10016–20.PubMedCentralCrossRefPubMed
52.
go back to reference Itagaki S, Akiyama H, Saito H, McGeer PL. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res. 1994;645:78–84.CrossRefPubMed Itagaki S, Akiyama H, Saito H, McGeer PL. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res. 1994;645:78–84.CrossRefPubMed
53.
go back to reference Tschopp J, Chonn A, Hertig S, French LE. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol. 1993;151:2159–65.PubMed Tschopp J, Chonn A, Hertig S, French LE. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol. 1993;151:2159–65.PubMed
55.
go back to reference Wang H, Zhang Z, Chu W, Hale T, Cooper JJ, Elbein SC. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J Clin Endocrinol Metab. 2005;90:1123–9.CrossRefPubMed Wang H, Zhang Z, Chu W, Hale T, Cooper JJ, Elbein SC. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J Clin Endocrinol Metab. 2005;90:1123–9.CrossRefPubMed
56.
go back to reference Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10:S76–83.CrossRefPubMed Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10:S76–83.CrossRefPubMed
57.
go back to reference Walston JD, Matteini AM, Nievergelt C, Lange LA, Fallin DM, Barzilai N, et al. Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults. Exp Gerontol. 2009;44:350–5.PubMedCentralCrossRefPubMed Walston JD, Matteini AM, Nievergelt C, Lange LA, Fallin DM, Barzilai N, et al. Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults. Exp Gerontol. 2009;44:350–5.PubMedCentralCrossRefPubMed
58.
go back to reference Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90:10061–5.PubMedCentralCrossRefPubMed Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90:10061–5.PubMedCentralCrossRefPubMed
59.
go back to reference Marz P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U. Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression. Glia. 1999;26:191–200.CrossRefPubMed Marz P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U. Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression. Glia. 1999;26:191–200.CrossRefPubMed
61.
go back to reference Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989;58:573–81.CrossRefPubMed Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989;58:573–81.CrossRefPubMed
62.
go back to reference Yasukawa K, Saito T, Fukunaga T, Sekimori Y, Koishihara Y, Fukui H, et al. Purification and characterization of soluble human IL-6 receptor expressed in CHO cells. J Biochem. 1990;108:673–6.PubMed Yasukawa K, Saito T, Fukunaga T, Sekimori Y, Koishihara Y, Fukui H, et al. Purification and characterization of soluble human IL-6 receptor expressed in CHO cells. J Biochem. 1990;108:673–6.PubMed
63.
go back to reference Huell M, Strauss S, Volk B, Berger M, Bauer J. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol. 1995;89:544–51.CrossRefPubMed Huell M, Strauss S, Volk B, Berger M, Bauer J. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol. 1995;89:544–51.CrossRefPubMed
64.
go back to reference Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab Invest. 1992;66:223–30.PubMed Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab Invest. 1992;66:223–30.PubMed
65.
go back to reference Bauer J, Ganter U, Strauss S, Stadtmuller G, Frommberger U, Bauer H, et al. The participation of interleukin-6 in the pathogenesis of Alzheimer’s disease. Res Immunol. 1992;143:650–7.CrossRefPubMed Bauer J, Ganter U, Strauss S, Stadtmuller G, Frommberger U, Bauer H, et al. The participation of interleukin-6 in the pathogenesis of Alzheimer’s disease. Res Immunol. 1992;143:650–7.CrossRefPubMed
66.
go back to reference Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20.CrossRefPubMed Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20.CrossRefPubMed
67.
go back to reference Angelis P, Scharf S, Mander A, Vajda F, Christophidis N. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer’s disease. Neurosci Lett. 1998;244:106–8.CrossRefPubMed Angelis P, Scharf S, Mander A, Vajda F, Christophidis N. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer’s disease. Neurosci Lett. 1998;244:106–8.CrossRefPubMed
68.
go back to reference Braak HaB E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:20. Braak HaB E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:20.
69.
go back to reference Zimmer ER, Leuzy A, Benedet AL, Breitner J, Gauthier S, Rosa-Neto P. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.PubMedCentralCrossRefPubMed Zimmer ER, Leuzy A, Benedet AL, Breitner J, Gauthier S, Rosa-Neto P. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.PubMedCentralCrossRefPubMed
70.
go back to reference Tapiola T, Alafuzoff I, Herukka S, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009;66:382–9.PubMed Tapiola T, Alafuzoff I, Herukka S, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009;66:382–9.PubMed
71.
go back to reference Klegeris A, Schwab C, Bissonnette CJ, McGeer PL. Induction of complement C9 messenger RNAs in human neuronal cells by inflammatory stimuli: relevance to neurodegenerative disorders. Exp Gerontol. 2001;36:1179–88.CrossRefPubMed Klegeris A, Schwab C, Bissonnette CJ, McGeer PL. Induction of complement C9 messenger RNAs in human neuronal cells by inflammatory stimuli: relevance to neurodegenerative disorders. Exp Gerontol. 2001;36:1179–88.CrossRefPubMed
72.
go back to reference Walker DG, Kim SU, McGeer PL. Expression of complement C4 and C9 genes by human astrocytes. Brain Res. 1998;809:31–8.CrossRefPubMed Walker DG, Kim SU, McGeer PL. Expression of complement C4 and C9 genes by human astrocytes. Brain Res. 1998;809:31–8.CrossRefPubMed
73.
go back to reference JC Morris, CM Roe, C Xiong, AM Fagan, AM Goate, D Phil, et al. APOE predicts Aβ but not tau Alzheimer’s pathology in cognitively normal aging Ann Neurol. 2010;67(1):122–31.PubMedCentral JC Morris, CM Roe, C Xiong, AM Fagan, AM Goate, D Phil, et al. APOE predicts Aβ but not tau Alzheimer’s pathology in cognitively normal aging Ann Neurol. 2010;67(1):122–31.PubMedCentral
74.
go back to reference Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–55.PubMedCentralPubMed Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–55.PubMedCentralPubMed
75.
go back to reference Ferreira ST, Klein WL. The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96:529–43.PubMedCentralCrossRefPubMed Ferreira ST, Klein WL. The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96:529–43.PubMedCentralCrossRefPubMed
76.
go back to reference Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat Nanotechnol. 2015;10:91–8.PubMedCentralCrossRefPubMed Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat Nanotechnol. 2015;10:91–8.PubMedCentralCrossRefPubMed
Metadata
Title
Epistasis analysis links immune cascades and cerebral amyloidosis
Authors
Andréa L. Benedet
Aurélie Labbe
Philippe Lemay
Eduardo R. Zimmer
Tharick A. Pascoal
Antoine Leuzy
Sulantha Mathotaarachchi
Sara Mohades
Monica Shin
Alexandre Dionne-Laporte
Thomas Beaudry
Cynthia Picard
Serge Gauthier
Judes Poirier
Guy Rouleau
Pedro Rosa-Neto
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0436-z

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue