Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

HLA-DRα1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS inflammation, enhances M2 macrophage frequency, and promotes neuroprotection

Authors: Gil Benedek, Roberto Meza-Romero, Kelley Jordan, Lucy Keenlyside, Halina Offner, Arthur A. Vandenbark

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

DRα1-mouse(m)MOG-35-55, a novel construct developed in our laboratory as a simpler and potentially less immunogenic alternative to two-domain class II constructs, was shown previously to target the MIF/CD74 pathway and to reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in DR*1501-Tg mice in a manner similar to the parent DR2β1-containing construct.

Methods

In order to determine whether DRα1-mMOG-35-55 could treat EAE in major histocompatibility complex (MHC)-mismatched mice and to evaluate the treatment effect on central nervous system (CNS) inflammation, C57BL/6 mice were treated with DRα1-mMOG-35-55. In addition, gene expression profile was analyzed in spinal cords of EAE DR*1501-Tg mice that were treated with DRα1-mMOG-35-55.

Results

We here demonstrate that DRα1-mMOG-35-55 could effectively treat EAE in MHC-mismatched C57BL/6 mice by reducing CNS inflammation, potentially mediated in part through an increased frequency of M2 monocytes in the spinal cord. Microarray analysis of spinal cord tissue from DRα1-mMOG-35-55-treated vs. vehicle control mice with EAE revealed decreased expression of a large number of pro-inflammatory genes including CD74, NLRP3, and IL-1β and increased expression of genes involved in myelin repair (MBP) and neuroregeneration (HUWE1).

Conclusion

These findings indicate that the DRα1-mMOG-35-55 construct retains therapeutic, anti-inflammatory, and neuroprotective activities during treatment of EAE across MHC disparate barriers.
Appendix
Available only for authorised users
Literature
3.
go back to reference Klein J, Sato A. The HLA system. Second of two parts. N Engl J Med. 2000;343(11):782–6. 10.1056/NEJM200009143431106.PubMedCrossRef Klein J, Sato A. The HLA system. Second of two parts. N Engl J Med. 2000;343(11):782–6. 10.1056/NEJM200009143431106.PubMedCrossRef
4.
go back to reference Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;343(10):702–9. 10.1056/NEJM200009073431006.PubMedCrossRef Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;343(10):702–9. 10.1056/NEJM200009073431006.PubMedCrossRef
6.
go back to reference Ramagopalan SV, Deluca GC, Degenhardt A, Ebers GC. The genetics of clinical outcome in multiple sclerosis. J Neuroimmunol. 2008;201-202:183–99. 10.1016/j.jneuroim.2008.02.016.PubMedCrossRef Ramagopalan SV, Deluca GC, Degenhardt A, Ebers GC. The genetics of clinical outcome in multiple sclerosis. J Neuroimmunol. 2008;201-202:183–99. 10.1016/j.jneuroim.2008.02.016.PubMedCrossRef
8.
go back to reference Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993;365(6448):756–9. doi:10.1038/365756a0.PubMedCrossRef Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993;365(6448):756–9. doi:10.​1038/​365756a0.PubMedCrossRef
9.
go back to reference Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13(5):587–96. doi:10.1038/nm1567.PubMedCrossRef Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13(5):587–96. doi:10.​1038/​nm1567.PubMedCrossRef
10.
go back to reference Calandra T. Macrophage migration inhibitory factor and host innate immune responses to microbes. Scand J Infect Dis. 2003;35(9):573–6.PubMedCrossRef Calandra T. Macrophage migration inhibitory factor and host innate immune responses to microbes. Scand J Infect Dis. 2003;35(9):573–6.PubMedCrossRef
11.
go back to reference Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(6544):68–71. doi:10.1038/377068a0.PubMedCrossRef Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(6544):68–71. doi:10.​1038/​377068a0.PubMedCrossRef
14.
go back to reference Denkinger CM, Denkinger M, Kort JJ, Metz C, Forsthuber TG. In vivo blockade of macrophage migration inhibitory factor ameliorates acute experimental autoimmune encephalomyelitis by impairing the homing of encephalitogenic T cells to the central nervous system. J Immunol. 2003;170(3):1274–82.PubMedCrossRef Denkinger CM, Denkinger M, Kort JJ, Metz C, Forsthuber TG. In vivo blockade of macrophage migration inhibitory factor ameliorates acute experimental autoimmune encephalomyelitis by impairing the homing of encephalitogenic T cells to the central nervous system. J Immunol. 2003;170(3):1274–82.PubMedCrossRef
16.
go back to reference Powell ND, Papenfuss TL, McClain MA, Gienapp IE, Shawler TM, Satoskar AR, et al. Cutting edge: macrophage migration inhibitory factor is necessary for progression of experimental autoimmune encephalomyelitis. J Immunol. 2005;175(9):5611–4.PubMedCrossRef Powell ND, Papenfuss TL, McClain MA, Gienapp IE, Shawler TM, Satoskar AR, et al. Cutting edge: macrophage migration inhibitory factor is necessary for progression of experimental autoimmune encephalomyelitis. J Immunol. 2005;175(9):5611–4.PubMedCrossRef
17.
go back to reference Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A. 2002;99(1):345–50. 10.1073/pnas.012511599 012511599.PubMedCentralPubMedCrossRef Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A. 2002;99(1):345–50. 10.1073/pnas.012511599 012511599.PubMedCentralPubMedCrossRef
20.
go back to reference Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–9. doi:10.1038/nn.2887.PubMedCrossRef Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–9. doi:10.​1038/​nn.​2887.PubMedCrossRef
24.
go back to reference Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17(1):2–15. doi:10.1177/1352458510379243.PubMedCrossRef Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17(1):2–15. doi:10.​1177/​1352458510379243​.PubMedCrossRef
26.
go back to reference Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia. 1995;15(4):437–46. doi:10.1002/glia.440150407.PubMedCrossRef Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia. 1995;15(4):437–46. doi:10.​1002/​glia.​440150407.PubMedCrossRef
30.
go back to reference Vandenbark AA, Rich C, Mooney J, Zamora A, Wang C, Huan J, et al. Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice. J Immunol. 2003;171(1):127–33.PubMedCrossRef Vandenbark AA, Rich C, Mooney J, Zamora A, Wang C, Huan J, et al. Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice. J Immunol. 2003;171(1):127–33.PubMedCrossRef
31.
go back to reference Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry. 1994;33(47):14144–55.PubMedCrossRef Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry. 1994;33(47):14144–55.PubMedCrossRef
34.
go back to reference Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33(Web Server issue):W741–8. 10.1093/nar/gki475.PubMedCentralPubMedCrossRef Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33(Web Server issue):W741–8. 10.1093/nar/gki475.PubMedCentralPubMedCrossRef
40.
43.
go back to reference Sinha S, Miller L, Subramanian S, McCarty OJ, Proctor T, Meza-Romero R, et al. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;225(1-2):52–61. doi:10.1016/j.jneuroim.2010.04.013.PubMedCentralPubMedCrossRef Sinha S, Miller L, Subramanian S, McCarty OJ, Proctor T, Meza-Romero R, et al. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;225(1-2):52–61. doi:10.​1016/​j.​jneuroim.​2010.​04.​013.PubMedCentralPubMedCrossRef
44.
go back to reference Yadav V, Bourdette DN, Bowen JD, Lynch SG, Mattson D, Preiningerova J, et al. Recombinant T-cell receptor ligand (RTL) for treatment of multiple sclerosis: a double-blind, placebo-controlled, phase 1, dose-escalation study. Autoimmune Dis. 2012;2012:954739. doi:10.1155/2012/954739.PubMedCentralPubMed Yadav V, Bourdette DN, Bowen JD, Lynch SG, Mattson D, Preiningerova J, et al. Recombinant T-cell receptor ligand (RTL) for treatment of multiple sclerosis: a double-blind, placebo-controlled, phase 1, dose-escalation study. Autoimmune Dis. 2012;2012:954739. doi:10.​1155/​2012/​954739.PubMedCentralPubMed
46.
go back to reference Gonzalez-Gay MA, Zanelli E, Khare SD, Krco CJ, Zhou P, Inoko H, et al. Human leukocyte antigen-DRB1*1502 (DR2Dw12) transgene reduces incidence and severity of arthritis in mice. Hum Immunol. 1996;50(1):54–60.PubMedCrossRef Gonzalez-Gay MA, Zanelli E, Khare SD, Krco CJ, Zhou P, Inoko H, et al. Human leukocyte antigen-DRB1*1502 (DR2Dw12) transgene reduces incidence and severity of arthritis in mice. Hum Immunol. 1996;50(1):54–60.PubMedCrossRef
47.
go back to reference Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, Benoist C, et al. Mice lacking MHC class II molecules. Cell. 1991;66(5):1051–66.PubMedCrossRef Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, Benoist C, et al. Mice lacking MHC class II molecules. Cell. 1991;66(5):1051–66.PubMedCrossRef
48.
go back to reference Vandenbark AA, Meza-Romero R, Benedek G, Andrew S, Huan J, Chou YK, et al. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun. 2013;40:96–110. doi:10.1016/j.jaut.2012.08.004.PubMedCentralPubMedCrossRef Vandenbark AA, Meza-Romero R, Benedek G, Andrew S, Huan J, Chou YK, et al. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun. 2013;40:96–110. doi:10.​1016/​j.​jaut.​2012.​08.​004.PubMedCentralPubMedCrossRef
49.
go back to reference Rinner WA, Bauer J, Schmidts M, Lassmann H, Hickey WF. Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia. 1995;14(4):257–66. doi:10.1002/glia.440140403.PubMedCrossRef Rinner WA, Bauer J, Schmidts M, Lassmann H, Hickey WF. Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia. 1995;14(4):257–66. doi:10.​1002/​glia.​440140403.PubMedCrossRef
50.
go back to reference Heinrichs D, Berres ML, Coeuru M, Knauel M, Nellen A, Fischer P, et al. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. FASEB J. 2014;28(12):5136–47. doi:10.1096/fj.14-256776.PubMedCrossRef Heinrichs D, Berres ML, Coeuru M, Knauel M, Nellen A, Fischer P, et al. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. FASEB J. 2014;28(12):5136–47. doi:10.​1096/​fj.​14-256776.PubMedCrossRef
Metadata
Title
HLA-DRα1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS inflammation, enhances M2 macrophage frequency, and promotes neuroprotection
Authors
Gil Benedek
Roberto Meza-Romero
Kelley Jordan
Lucy Keenlyside
Halina Offner
Arthur A. Vandenbark
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0342-4

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue