Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease

Authors: Jae K Ryu, T Cho, Hyun B Choi, N Jantaratnotai, James G McLarnon

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

The chemokine interleukin-8 (IL-8) and its receptor CXCR2 contribute to chemotactic responses in Alzheimer’s disease (AD); however, properties of the ligand and receptor have not been characterized in animal models of disease. The primary aim of our study was to examine effects of pharmacological antagonism of CXCR2 as a strategy to inhibit receptor-mediated inflammatory reactivity and enhance neuronal viability in animals receiving intrahippocampal injection of amyloid-beta (Aβ1–42).

Methods

In vivo studies used an animal model of Alzheimer’s disease incorporating injection of full-length Aβ1–42 into rat hippocampus. Immunohistochemical staining of rat brain was used to measure microgliosis, astrogliosis, neuronal viability, and oxidative stress. Western blot and Reverse Transcription PCR (RT-PCR) were used to determine levels of CXCR2 in animal tissue with the latter also used to determine expression of pro-inflammatory mediators. Immunostaining of human AD and non-demented (ND) tissue was also undertaken.

Results

We initially determined that in the human brain, AD relative to ND tissue exhibited marked increases in expression of CXCR2 with cell-specific receptor expression prominent in microglia. In Aβ1–42-injected rat brain, CXCR2 and IL-8 showed time-dependent increases in expression, concomitant with enhanced gliosis, relative to controls phosphate-buffered saline (PBS) or reverse peptide Aβ42–1 injection. Administration of the competitive CXCR2 antagonist SB332235 to peptide-injected rats significantly reduced expression of CXCR2 and microgliosis, with astrogliosis unchanged. Double staining studies demonstrated localization of CXCR2 and microglial immunoreactivity nearby deposits of Aβ1–42 with SB332235 effective in inhibiting receptor expression and microgliosis. The numbers of neurons in granule cell layer (GCL) were reduced in rats receiving Aβ1–42, compared with PBS, with administration of SB332235 to peptide-injected animals conferring neuroprotection. Oxidative stress was indicated in the animal model since both 4-hydroxynonenal (4-HNE) and hydroethidine (HEt) were markedly elevated in Aβ1–42 vs PBS-injected rat brain and diminished with SB332235 treatment.

Conclusion

Overall, the findings suggest critical roles for CXCR2-dependent inflammatory responses in an AD animal model with pharmacological modulation of the receptor effective in inhibiting inflammatory reactivity and conferring neuroprotection against oxidative damage.
Literature
3.
go back to reference Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflamm. 2011;8:26.CrossRef Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflamm. 2011;8:26.CrossRef
4.
go back to reference McGeer PL, McGeer EG. NSAIDS and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging. 2006;28:639–47.PubMedCrossRef McGeer PL, McGeer EG. NSAIDS and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging. 2006;28:639–47.PubMedCrossRef
5.
go back to reference Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer’s disease. Neurobiol Aging. 2001;22:909–13.PubMedCrossRef Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer’s disease. Neurobiol Aging. 2001;22:909–13.PubMedCrossRef
6.
go back to reference Ryu JK, Mclarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis. 2008;29:254–66.PubMedCrossRef Ryu JK, Mclarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis. 2008;29:254–66.PubMedCrossRef
7.
go back to reference McLarnon JG. Microglial chemotactic signaling factors in Alzheimer’s disease. Am J Neurodegener Dis. 2012;1:199–204.PubMedCentralPubMed McLarnon JG. Microglial chemotactic signaling factors in Alzheimer’s disease. Am J Neurodegener Dis. 2012;1:199–204.PubMedCentralPubMed
8.
go back to reference Xia M, Hyman BT. Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. J Neuro Virology. 2012;5:32–41. Xia M, Hyman BT. Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. J Neuro Virology. 2012;5:32–41.
9.
10.
go back to reference Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging. 2001;22:957–66.PubMedCrossRef Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging. 2001;22:957–66.PubMedCrossRef
11.
go back to reference Lue LF, Rydel R, Brigham E, Yang LB, Hampel H, Murphy GM, et al. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia. 2001;35:72–9.PubMedCrossRef Lue LF, Rydel R, Brigham E, Yang LB, Hampel H, Murphy GM, et al. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia. 2001;35:72–9.PubMedCrossRef
12.
go back to reference Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, et al. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol. 2006;63:538–43.PubMedCrossRef Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, et al. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol. 2006;63:538–43.PubMedCrossRef
13.
go back to reference Franciosi S, Ryu JK, Kim SU, McLarnon JG. IL-8 enhancement of amyloid- beta (Abeta1-42)-induced expression and production of proinflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol. 2005;159:66–74.PubMedCrossRef Franciosi S, Ryu JK, Kim SU, McLarnon JG. IL-8 enhancement of amyloid- beta (Abeta1-42)-induced expression and production of proinflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol. 2005;159:66–74.PubMedCrossRef
14.
go back to reference Xia M, Qin S, McNamara M, Mackay C, Hyman BT. Interleukin-8 receptor immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol. 1997;150:1267–74.PubMedCentralPubMed Xia M, Qin S, McNamara M, Mackay C, Hyman BT. Interleukin-8 receptor immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol. 1997;150:1267–74.PubMedCentralPubMed
15.
go back to reference Stevenson CS, Coote K, Webster R, Johnston H, Atherton HC, Nicholls A, et al. Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect. Am J Physiol Lung Cell Mol Physiol. 2005;288:L514–22.PubMedCrossRef Stevenson CS, Coote K, Webster R, Johnston H, Atherton HC, Nicholls A, et al. Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect. Am J Physiol Lung Cell Mol Physiol. 2005;288:L514–22.PubMedCrossRef
16.
go back to reference Gorio A, Madaschi L, Zadra G, Marfia G, Cavalieri B, Bertini R, et al. Reparixin, an inhibitor of CXCR2 function, attenuates inflammatory responses and promotes recovery of function after traumatic lesion to the spinal cord. J Pharmacol Exp Thera. 2007;322:973–81.CrossRef Gorio A, Madaschi L, Zadra G, Marfia G, Cavalieri B, Bertini R, et al. Reparixin, an inhibitor of CXCR2 function, attenuates inflammatory responses and promotes recovery of function after traumatic lesion to the spinal cord. J Pharmacol Exp Thera. 2007;322:973–81.CrossRef
17.
go back to reference Valles A, Grijpink-Ongering L, de Bree FM, Tuinstra T, Ronken E. Differential regulation of the CXCR2 chemokine network in rat brain trauma: implications for neuroimmune interactions and neuron survival. Neurobiol Dis. 2006;22:312–22.PubMedCrossRef Valles A, Grijpink-Ongering L, de Bree FM, Tuinstra T, Ronken E. Differential regulation of the CXCR2 chemokine network in rat brain trauma: implications for neuroimmune interactions and neuron survival. Neurobiol Dis. 2006;22:312–22.PubMedCrossRef
18.
go back to reference Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122:3127–44.PubMedCentralPubMedCrossRef Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122:3127–44.PubMedCentralPubMedCrossRef
19.
go back to reference Traves SL, Smith SJ, Barnes PJ, Donnelly LE. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leuokocyte Biol. 2004;76:441–50.CrossRef Traves SL, Smith SJ, Barnes PJ, Donnelly LE. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leuokocyte Biol. 2004;76:441–50.CrossRef
20.
go back to reference Schwab C, Yu S, Wong W, McGeer EC, McGeer PL. GAD65, GAD67 and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimer Dis. 2013;33:1073–88. Schwab C, Yu S, Wong W, McGeer EC, McGeer PL. GAD65, GAD67 and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimer Dis. 2013;33:1073–88.
21.
go back to reference Braak H, Braak K. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.PubMedCrossRef Braak H, Braak K. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.PubMedCrossRef
22.
go back to reference National Institute of Aging. Consensus recommendations for the post-mortem diagnosis of Alzheimer’s disease. National Institute of Aging and Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer’s disease. Neurobiol Aging. 1997;18:S1–2.CrossRef National Institute of Aging. Consensus recommendations for the post-mortem diagnosis of Alzheimer’s disease. National Institute of Aging and Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer’s disease. Neurobiol Aging. 1997;18:S1–2.CrossRef
23.
go back to reference Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, et al. LRRK2 expression in normal and pathological human brain and in human cell lines. J Neuropath Exp Neurol. 2006;65:953–63.PubMedCrossRef Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, et al. LRRK2 expression in normal and pathological human brain and in human cell lines. J Neuropath Exp Neurol. 2006;65:953–63.PubMedCrossRef
24.
go back to reference Franciosi S, Ryu JK, Choi HB, Radov L, Kim SU, McLarnon JG. Broad-spectrum effects of 4-aminopyridine to modulate amyloid beta1-42-induced cell signalling and functional responses in human microglia. J Neurosci. 2006;26:11652–64.PubMedCrossRef Franciosi S, Ryu JK, Choi HB, Radov L, Kim SU, McLarnon JG. Broad-spectrum effects of 4-aminopyridine to modulate amyloid beta1-42-induced cell signalling and functional responses in human microglia. J Neurosci. 2006;26:11652–64.PubMedCrossRef
25.
go back to reference Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13:2911–25.PubMedCentralPubMedCrossRef Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13:2911–25.PubMedCentralPubMedCrossRef
26.
go back to reference Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG. Microglial VEGF receptor response is an integral chemotactic component in Alzheimer’s disease pathology. J Neurosci. 2009;29:3–13.PubMedCrossRef Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG. Microglial VEGF receptor response is an integral chemotactic component in Alzheimer’s disease pathology. J Neurosci. 2009;29:3–13.PubMedCrossRef
27.
go back to reference Overbeek SA, Henricks PAJ, Srienc AI, Koelink PJ, de Kruijf P, Lim HD, et al. N-acetylated proline-glycine-proline induced G-protein dependent chemotaxis of neutrophils independent of CXCL8 release. Eur J Pharmacol. 2011;668:428–34.PubMedCentralPubMedCrossRef Overbeek SA, Henricks PAJ, Srienc AI, Koelink PJ, de Kruijf P, Lim HD, et al. N-acetylated proline-glycine-proline induced G-protein dependent chemotaxis of neutrophils independent of CXCL8 release. Eur J Pharmacol. 2011;668:428–34.PubMedCentralPubMedCrossRef
28.
go back to reference Bindokas VP, Jordan J, Lee CC, Miller RJ. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996;16:1324–36.PubMed Bindokas VP, Jordan J, Lee CC, Miller RJ. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996;16:1324–36.PubMed
29.
go back to reference Choi HB, Ryu JK, Kim SU, McLarnon JG. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci. 2007;27:4957–68.PubMedCrossRef Choi HB, Ryu JK, Kim SU, McLarnon JG. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci. 2007;27:4957–68.PubMedCrossRef
30.
go back to reference McLarnon JG, Ryu JK. Relevance of Aβ1–42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alz Res. 2008;5:475–80.CrossRef McLarnon JG, Ryu JK. Relevance of Aβ1–42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alz Res. 2008;5:475–80.CrossRef
31.
go back to reference McLarnon JG, Ryu JK, Walker DG, Choi HB. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol. 2006;65:1090–7.PubMedCrossRef McLarnon JG, Ryu JK, Walker DG, Choi HB. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol. 2006;65:1090–7.PubMedCrossRef
32.
go back to reference Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4- hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem. 1997;68:2092–7.PubMedCrossRef Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4- hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem. 1997;68:2092–7.PubMedCrossRef
33.
go back to reference Forero DA, Casadesus G, Perry G, Arboleda H. Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J Cell Mol Med. 2006;10:796–805.PubMedCentralPubMedCrossRef Forero DA, Casadesus G, Perry G, Arboleda H. Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J Cell Mol Med. 2006;10:796–805.PubMedCentralPubMedCrossRef
34.
go back to reference Butterfield DA, Griffin S, Munch G, Pasinetti GM. Amyloid β-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alz Dis. 2002;4:193–201. Butterfield DA, Griffin S, Munch G, Pasinetti GM. Amyloid β-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alz Dis. 2002;4:193–201.
35.
go back to reference McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signalling and superoxide production in microglia. J Neurosci. 1997;17:2284–94.PubMed McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signalling and superoxide production in microglia. J Neurosci. 1997;17:2284–94.PubMed
36.
go back to reference Wang Q, Rowan MJ, Anwyl R. β-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci. 2004;24:6049–56.PubMedCrossRef Wang Q, Rowan MJ, Anwyl R. β-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci. 2004;24:6049–56.PubMedCrossRef
37.
go back to reference Combs CK. Inflammation and microglial actions in Alzheimer’s disease. J Neuroimmune Pharmacol. 2009;4:380–8.PubMedCrossRef Combs CK. Inflammation and microglial actions in Alzheimer’s disease. J Neuroimmune Pharmacol. 2009;4:380–8.PubMedCrossRef
38.
go back to reference Hashioka S, McLarnon JG, Ryu JK, Abd-el-aziz A, Neeland E, Klegeris A. Pyrazole compound 2-MBAPA as a novel inhibitor of microglial activation and neurotoxicity in vitro and in vivo. J Alzheimer’s Dis. 2011;27:531–41. Hashioka S, McLarnon JG, Ryu JK, Abd-el-aziz A, Neeland E, Klegeris A. Pyrazole compound 2-MBAPA as a novel inhibitor of microglial activation and neurotoxicity in vitro and in vivo. J Alzheimer’s Dis. 2011;27:531–41.
39.
go back to reference Jantaratnotai N, Schwab C, Ryu JK, McGeer PL, McLarnon JG. Converging perturbed microvasculature and microglial clusters characterize Alzheimer disease brain. Curr Alz Res. 2010;7:625–36.CrossRef Jantaratnotai N, Schwab C, Ryu JK, McGeer PL, McLarnon JG. Converging perturbed microvasculature and microglial clusters characterize Alzheimer disease brain. Curr Alz Res. 2010;7:625–36.CrossRef
40.
go back to reference Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response. Nat Med. 2006;12:1005–15.PubMed Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response. Nat Med. 2006;12:1005–15.PubMed
41.
go back to reference Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49:489–502.PubMedCrossRef Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49:489–502.PubMedCrossRef
42.
go back to reference Weitz TM, Town T. Microglia in Alzheimer disease: it’s all about context. Int J Alz Dis. 2012. doi:10.1155/2012/314185. Weitz TM, Town T. Microglia in Alzheimer disease: it’s all about context. Int J Alz Dis. 2012. doi:10.1155/2012/314185.
43.
go back to reference El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13:432–8.PubMedCrossRef El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13:432–8.PubMedCrossRef
44.
go back to reference Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G, et al. Microglial Cx3cr1 knockout prevents neuronal loss in a mouse model of Alzheimer’s disease. Nat Neurosci. 2010;13:411–3.PubMedCentralPubMedCrossRef Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G, et al. Microglial Cx3cr1 knockout prevents neuronal loss in a mouse model of Alzheimer’s disease. Nat Neurosci. 2010;13:411–3.PubMedCentralPubMedCrossRef
45.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef
Metadata
Title
Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease
Authors
Jae K Ryu
T Cho
Hyun B Choi
N Jantaratnotai
James G McLarnon
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0339-z

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue