Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model

Authors: Wen-Qi Zuo, Yu-Juan Hu, Yang Yang, Xue-Yan Zhao, Yuan-Yuan Zhang, Wen Kong, Wei-Jia Kong

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase.

Methods

Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay.

Results

LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01).

Conclusions

Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Literature
1.
go back to reference Kesari KK, Siddiqui MH, Meena R, Verma HN, Kumar S. Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol. 2013;51:187–200.PubMed Kesari KK, Siddiqui MH, Meena R, Verma HN, Kumar S. Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol. 2013;51:187–200.PubMed
2.
go back to reference Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318–25.PubMedCrossRef Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318–25.PubMedCrossRef
3.
go back to reference Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111:881–3. discussion A408.PubMedCentralPubMedCrossRef Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111:881–3. discussion A408.PubMedCentralPubMedCrossRef
4.
go back to reference Hardell L, Carlberg M, Hansson MK. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology. 2013;20:85–110.PubMedCrossRef Hardell L, Carlberg M, Hansson MK. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology. 2013;20:85–110.PubMedCrossRef
5.
go back to reference Yao K, Wu W, Yu Y, Zeng Q, He J, Lu D, et al. Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation. Invest Ophthalmol Vis Sci. 2008;49:2009–15.PubMedCrossRef Yao K, Wu W, Yu Y, Zeng Q, He J, Lu D, et al. Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation. Invest Ophthalmol Vis Sci. 2008;49:2009–15.PubMedCrossRef
6.
go back to reference Malyapa RS, Ahern EW, Bi C, Straube WL, LaRegina M, Pickard WF, et al. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res. 1998;149:637–45.PubMedCrossRef Malyapa RS, Ahern EW, Bi C, Straube WL, LaRegina M, Pickard WF, et al. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res. 1998;149:637–45.PubMedCrossRef
7.
go back to reference Hook GJ, Zhang P, Lagroye I, Li L, Higashikubo R, Moros EG, et al. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat Res. 2004;161:193–200.PubMedCrossRef Hook GJ, Zhang P, Lagroye I, Li L, Higashikubo R, Moros EG, et al. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat Res. 2004;161:193–200.PubMedCrossRef
8.
go back to reference Galloni P, Lovisolo GA, Mancini S, Parazzini M, Pinto R, Piscitelli M, et al. Effects of 900 MHz electromagnetic fields exposure on cochlear cells’ functionality in rats: evaluation of distortion product otoacoustic emissions. Bioelectromagnetics. 2005;26:536–47.PubMedCrossRef Galloni P, Lovisolo GA, Mancini S, Parazzini M, Pinto R, Piscitelli M, et al. Effects of 900 MHz electromagnetic fields exposure on cochlear cells’ functionality in rats: evaluation of distortion product otoacoustic emissions. Bioelectromagnetics. 2005;26:536–47.PubMedCrossRef
9.
go back to reference Huang TQ, Lee MS, Oh EH, Kalinec F, Zhang BT, Seo JS, et al. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int J Radiat Biol. 2008;84:909–15.PubMedCrossRef Huang TQ, Lee MS, Oh EH, Kalinec F, Zhang BT, Seo JS, et al. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int J Radiat Biol. 2008;84:909–15.PubMedCrossRef
10.
go back to reference Luukkonen J, Juutilainen J, Naarala J. Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics. 2010;31:417–24.PubMed Luukkonen J, Juutilainen J, Naarala J. Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics. 2010;31:417–24.PubMed
11.
go back to reference Smit AL, Stokroos RJ, Litjens SG, Kremer B, Kramer BW. Potential role for lipopolysaccharide in congenital sensorineural hearing loss. J Med Microbiol. 2010;59:377–83.PubMedCrossRef Smit AL, Stokroos RJ, Litjens SG, Kremer B, Kramer BW. Potential role for lipopolysaccharide in congenital sensorineural hearing loss. J Med Microbiol. 2010;59:377–83.PubMedCrossRef
12.
go back to reference Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, et al. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008;1:117–38.PubMedCentralPubMedCrossRef Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, et al. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008;1:117–38.PubMedCentralPubMedCrossRef
13.
go back to reference Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405:559–68.PubMedCentralPubMedCrossRef Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405:559–68.PubMedCentralPubMedCrossRef
14.
go back to reference Avci B, Akar A, Bilgici B, Tuncel OK. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol. 2012;88:799–805.PubMedCrossRef Avci B, Akar A, Bilgici B, Tuncel OK. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol. 2012;88:799–805.PubMedCrossRef
15.
go back to reference Lu YS, Huang BT, Huang YX. Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid Med Cell Longev. 2012;2012:740280.PubMedCentralPubMed Lu YS, Huang BT, Huang YX. Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid Med Cell Longev. 2012;2012:740280.PubMedCentralPubMed
16.
go back to reference Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307.PubMedCrossRef Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307.PubMedCrossRef
17.
go back to reference Al Dhaheri Y, Attoub S, Ramadan G, Arafat K, Bajbouj K, Karuvantevida N, et al. Carnosol induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer. PLoS One. 2014;9:e109630.PubMedCentralPubMedCrossRef Al Dhaheri Y, Attoub S, Ramadan G, Arafat K, Bajbouj K, Karuvantevida N, et al. Carnosol induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer. PLoS One. 2014;9:e109630.PubMedCentralPubMedCrossRef
18.
go back to reference Deng Q, Wang Z, Wang L, Zhang L, Xiang X, Chong T. Lower mRNA and protein expression levels of LC3 and Beclin1, markers of autophagy, were correlated with progression of renal clear cell carcinoma. Jpn J Clin Oncol. 2013;43:1261–8.PubMedCrossRef Deng Q, Wang Z, Wang L, Zhang L, Xiang X, Chong T. Lower mRNA and protein expression levels of LC3 and Beclin1, markers of autophagy, were correlated with progression of renal clear cell carcinoma. Jpn J Clin Oncol. 2013;43:1261–8.PubMedCrossRef
19.
go back to reference Zhou Z, Liu Q, Davis RL. Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci. 2005;25:7558–66.PubMedCrossRef Zhou Z, Liu Q, Davis RL. Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci. 2005;25:7558–66.PubMedCrossRef
20.
go back to reference Kruszewski M, Iwanenko T, Machaj EK, Oldak T, Wojewodzka M, Kapka-Skrzypczak L, et al. Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis. 2012;27:551–8.PubMedCrossRef Kruszewski M, Iwanenko T, Machaj EK, Oldak T, Wojewodzka M, Kapka-Skrzypczak L, et al. Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis. 2012;27:551–8.PubMedCrossRef
21.
go back to reference Seidel C, Lautenschlager C, Dunst J, Muller AC. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay. Radiat Oncol. 2012;7:61.PubMedCentralPubMedCrossRef Seidel C, Lautenschlager C, Dunst J, Muller AC. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay. Radiat Oncol. 2012;7:61.PubMedCentralPubMedCrossRef
22.
go back to reference Ersson C, Moller L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis. 2011;26:689–95.PubMedCrossRef Ersson C, Moller L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis. 2011;26:689–95.PubMedCrossRef
23.
go back to reference Kumaravel TS, Jha AN. Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res. 2006;605:7–16.PubMedCrossRef Kumaravel TS, Jha AN. Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res. 2006;605:7–16.PubMedCrossRef
24.
go back to reference Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, et al. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res. 2010;683:35–42.PubMedCrossRef Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, et al. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res. 2010;683:35–42.PubMedCrossRef
25.
go back to reference Xu S, Chen G, Chen C, Sun C, Zhang D, Murbach M, et al. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One. 2013;8:e54906.PubMedCentralPubMedCrossRef Xu S, Chen G, Chen C, Sun C, Zhang D, Murbach M, et al. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One. 2013;8:e54906.PubMedCentralPubMedCrossRef
26.
go back to reference Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, et al. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics. 2006;6:4732–8.PubMedCrossRef Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, et al. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics. 2006;6:4732–8.PubMedCrossRef
27.
go back to reference Liu K, Zhang G, Wang Z, Liu Y, Dong J, Dong X, et al. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800 MHz radiofrequency electromagnetic radiation. Toxicol Lett. 2014;228:216–24.PubMedCrossRef Liu K, Zhang G, Wang Z, Liu Y, Dong J, Dong X, et al. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800 MHz radiofrequency electromagnetic radiation. Toxicol Lett. 2014;228:216–24.PubMedCrossRef
28.
go back to reference Lee E, Oh E, Lee J, Sul D. Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci. 2004;81:121–32.PubMedCrossRef Lee E, Oh E, Lee J, Sul D. Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci. 2004;81:121–32.PubMedCrossRef
29.
go back to reference Bailey EM, Green SH. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci. 2014;34:13110–26.PubMedCentralPubMedCrossRef Bailey EM, Green SH. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci. 2014;34:13110–26.PubMedCentralPubMedCrossRef
30.
go back to reference Seckin E, Suren Basar F, Atmaca S, Kaymaz FF, Suzer A, Akar A, et al. The effect of radiofrequency radiation generated by a Global System for Mobile Communications source on cochlear development in a rat model. J Laryngol Otol. 2014;128:400–5.PubMedCrossRef Seckin E, Suren Basar F, Atmaca S, Kaymaz FF, Suzer A, Akar A, et al. The effect of radiofrequency radiation generated by a Global System for Mobile Communications source on cochlear development in a rat model. J Laryngol Otol. 2014;128:400–5.PubMedCrossRef
31.
go back to reference Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Filho BP, et al. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol. 2014;14:236.PubMedCentralPubMedCrossRef Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Filho BP, et al. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol. 2014;14:236.PubMedCentralPubMedCrossRef
32.
go back to reference Kim ID, Ha BJ. Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicol In Vitro. 2009;23:1014–9.PubMedCrossRef Kim ID, Ha BJ. Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicol In Vitro. 2009;23:1014–9.PubMedCrossRef
33.
go back to reference Eguchi M, Kariya S, Okano M, Higaki T, Makihara S, Fujiwara T, et al. Lipopolysaccharide induces proinflammatory cytokines and chemokines in experimental otitis media through the prostaglandin D2 receptor (DP)-dependent pathway. Clin Exp Immunol. 2011;163:260–9.PubMedCentralPubMedCrossRef Eguchi M, Kariya S, Okano M, Higaki T, Makihara S, Fujiwara T, et al. Lipopolysaccharide induces proinflammatory cytokines and chemokines in experimental otitis media through the prostaglandin D2 receptor (DP)-dependent pathway. Clin Exp Immunol. 2011;163:260–9.PubMedCentralPubMedCrossRef
34.
go back to reference Wong VK, Li T, Law BY, Ma ED, Yip NC, Michelangeli F, et al. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis. 2013;4:e720.PubMedCentralPubMedCrossRef Wong VK, Li T, Law BY, Ma ED, Yip NC, Michelangeli F, et al. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis. 2013;4:e720.PubMedCentralPubMedCrossRef
35.
go back to reference Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal. 2001;26:605–8.PubMedCrossRef Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal. 2001;26:605–8.PubMedCrossRef
36.
go back to reference Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008;62:104–9.PubMedCrossRef Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008;62:104–9.PubMedCrossRef
37.
go back to reference Vecchia P. Exposure of humans to electromagnetic fields. Standards and regulations. Ann Ist Super Sanita. 2007;43:260–7.PubMed Vecchia P. Exposure of humans to electromagnetic fields. Standards and regulations. Ann Ist Super Sanita. 2007;43:260–7.PubMed
38.
go back to reference Ivancsits S, Diem E, Jahn O, Rudiger HW. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 2003;76:431–6.PubMedCrossRef Ivancsits S, Diem E, Jahn O, Rudiger HW. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 2003;76:431–6.PubMedCrossRef
39.
go back to reference Focke F, Schuermann D, Kuster N, Schar P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 2010;683:74–83.PubMedCrossRef Focke F, Schuermann D, Kuster N, Schar P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 2010;683:74–83.PubMedCrossRef
Metadata
Title
Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model
Authors
Wen-Qi Zuo
Yu-Juan Hu
Yang Yang
Xue-Yan Zhao
Yuan-Yuan Zhang
Wen Kong
Wei-Jia Kong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0300-1

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue